

RAGE™128
Software Development Guide

Technical Reference Manual
P/N: SDK-G04000 Rev 0.01

© 1999 ATI Technologies Inc.

The information contained in this manual has been carefully checked and is
believed to be entirely reliable. No responsibility is assumed for
inaccuracies. ATI reserves the right to make changes at any time to improve
design and supply the best product possible.

ATI , mach64, PC2TV, 3D RAGE, and RAGE THEATER are
trademarks and/or registered trademarks of ATI Technologies Inc. All other
trademarks and product names are properties of their respective owners.

CONFIDENTIAL MATERIAL
All information contained in this manual is confidential material of ATI
Technologies Inc. Unauthorized use or disclosure of the information
contained herein is prohibited.
You may be held responsible for any loss or damage suffered by ATI for your
unauthorized disclosure hereof, in whole or in part. Please exercise the
following precautions:

• Store all hard copies in a secure place when not in use.
• Save all electronic copies on password protected systems.
• Do not reproduce or distribute any portions of this manual in paper or

electronic form (except as permitted by ATI).
• Do not post this manual on any LAN or WAN (except as permitted by

ATI).

Your protection of the information contained herein may be subject to
periodic audit by ATI. This manual is subject to possible recall by ATI.

RAGE 128 Register Reference Manuals

Release Date Description of Changes

0.01 Aug 1999 First draft completed.

Record of Revisions

Related Manuals

....1-1

1-2

1-3

-4

1-5
1-5
1-5
1-5

....2-1

....2-2

..2-4
..2-4
.2-5

6

-10
2-10
-10
-11

.2-14

.2-15
-16

2-19
-20
2-21
-21

-22
23
-23
Table of Contents

Chapter 1: Overview

1.1 Scope..

1.2 Major Features of the RAGE 128...

1.3 A Chapter Summary of this Manual...

1.4 Notations and Conventions Used in this Manual..1

1.5 Nomenclature and Conventions...
1.5.1 Register and Field Names...
1.5.2 Numeric Representations..
1.5.3 Register Description...

Chapter 2: Programming Basics

2.1 Scope..

2.2 Overview...

2.3 Operation Modes...
2.3.1 VGA Mode..
2.3.2 Accelerator Mode..

2.4 Drawing Modes in Acceleration-operation Mode...2-

2.5 Review of Imaging Terminology...2
2.5.1 Raster Image..
2.5.2 True RGB Color...2
2.5.3 Representing Pixels..2
2.5.4 Pixels..
2.5.5 Pitch..
2.5.6 Video Memory...2

2.6 Memory Apertures..
2.6.1 VGA Memory Aperture..2
2.6.2 Video BIOS..
2.6.3 Register Apertures..2
2.6.4 Linear Memory Apertures...2
2.6.5 AGP System Memory Image..2-
2.6.6 RAGE 128 PCI GART...2
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential Preliminary TOC-3

Table of Contents

27

2-28

2-29

.... 3-1

3-2
-2
-3
3-3

-5

3-7
3-7

11
4

6
-20

-24

.... 4-1

-2

-4
4-4
-13

4-19

.... 5-1

5-3
5-3
3
5-4
2.7 Display Mode and Mode Switching...2-

2.8 Engine Discipline..

2.9 BIOS Services...

Chapter 3: Accelerator Operation Mode

3.1 Scope..

3.2 Step 1: Detect the RAGE 128..
3.2.1 Using the PCI Configuration Space.. 3
3.2.2 Scanning the BIOS Segment..3
3.2.3 Scratch Register Test...

3.3 Step 2: Obtain the Configuration Information.. 3

3.4 Step 3: Set a Display Mode...
3.4.1 Using the BIOS Function...
3.4.2 Passing a CRT Parameter Table to Set a Display Mode................................3-10
3.4.3 Manually Setting a Display Mode.. 3-
3.4.4 Calculating the PLL Register Values..3-1
3.4.5 Determining the Post and Feedback Dividers...3-1
3.4.6 Programming the DDA..3

3.5 Step 4: Initialize the GUI Engine...3

Chapter 4: Programming

4.1 Scope..

4.2 Engine Command Queue Maintenance.. 4

4.3 Programmed I/O Drawing Operations... 4
4.3.1 Drawing Rectangles...
4.3.2 Drawing Lines...4

4.4 Hardware Cursor...

Chapter 5: CCE Engine Initialization and Usage

5.1 Scope..

5.2 Starting the CCE Microengine...
5.2.1 Wait for Engine Idle...
5.2.2 Load the Microcode into the Microengine.. 5-
5.2.3 Load the CCE Registers...
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
TOC-4 Preliminary Proprietary and Confidential

Table of Contents

.5-9
5-9
-11
-15

....6-1

.6-2
-3

..6-5
6-5
.6-7
-10

6-14
-14
17
-20
3

.6-24
25
27

.6-30
-30
-30
-38

-48

....7-1

7-2

7-6
-7

0

-12
5.2.4 Cautions When Programming RAGE 128 in CCE Mode.................................5-8

5.3 Ring Buffer Management...
5.3.1 The Ring Buffer Concept..
5.3.2 Ring Buffer Server...5
5.3.3 Indirect Buffer..5

Chapter 6: CCE Packets

6.1 Scope..

6.2 2D Coordinate System..
6.2.1 Essentials of 2D Drawing Operations..6

6.3 Drawing Objects..
6.3.1 Drawing Rectangles...
6.3.2 Drawing Polylines...
6.3.3 Drawing Polyscanlines...6

6.4 Block Transfers...
6.4.1 Bit Block Transfer..6
6.4.2 Transparent Bit Block Transfer...6-
6.4.3 Scaled Block Transfer..6
6.4.4 Transparent Scaled Block Transfer...6-2

6.5 Drawing Text...
6.5.1 Drawing Text in Small Font..6-
6.5.2 Drawing Text in Large Font..6-

6.6 3D Rendering...
6.6.1 Setting Up the 3D Context..6
6.6.2 Drawing 3D Primitives...6
6.6.3 Texture Mapping..6
6.6.4 Setting 3D Render States..6

Chapter 7: Advanced Topics

7.1 Scope..

7.2 Back-End Overlay and Scalar..
7.2.1 Feature Summary for the Back End Video Scalar..7-4
7.2.2 Functional Overview..
7.2.3 Additional Quality Enhancements...7

7.3 Auto-Flipping and Advanced Deinterlacing...7-1

7.4 Overlay Autonomous Updating...7
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential Preliminary TOC-5

Table of Contents

-13

-15
7-15
7-15
7-15
-15
-17
7
0

20
21
3
-24
5

7-28

7-29

-30
7-30
7-31
7-32

-35

7-36

7-37
-37
37
9

...A-1

)

pe

on

ge

n

e

p

7.5 Synchronizing Decoded Video Streams to the Display Refresh..................................7-13
7.5.1 GUI Stall Mechanism...7

7.6 Programming the Scalar..7
7.6.1 Overview...
7.6.2 Setup...
7.6.3 Bandwidth...
7.6.4 Managing Bandwidth...7
7.6.5 Physical Scaling Ratios..7
7.6.6 Setting up the Horizontal Accumulator...7-1
7.6.7 Setting up the Destination Window..7-2
7.6.8 Setting up the Source Window...7-
7.6.9 Calculating the Filter Coefficients..7-
7.6.10 Setting up the Vertical Accumulator...7-2
7.6.11 Autonomous Update..7
7.6.12 Autoflipping and Advanced Deinterlacing..7-2

7.7 Color Controls..

7.8 Keying Controls..

7.9 Tabulating Cycles in the HBlank...7
7.9.1 Part 1...
7.9.2 Part 2...
7.9.3 Part 3...

7.10 Tips for Getting More Bandwidth..7

7.11 Front-end Scalar..

7.12 Bus Mastering...
7.12.1 Bus Master Operation..7
7.12.2 Creating a Descriptor Table..7-
7.12.3 Setting up a System Bus Master Transfer...7-3

 Appendix A: BIOS Function Calls

A.1 Scope..

A.2 AH = 0; ..Set Video Mode (AL = Video modeA-1

A.3 AH = 1; ...Set Cursor TyA-2

A.4 AH = 2; ...Set Current Cursor PositiA-2

A.5 AH = 3; ..Read Current Cursor Position at the specified paA-2

A.6 AH = 4; ...Read Current Light Pen PositioA-2

A.7 AH = 5; ... Select Active Display PagA-2

A.8 AH = 6; ...Scroll Active Page UA-3
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
TOC-6 Preliminary Proprietary and Confidential

Table of Contents

n

n

e

e

tte

)

e)

e

g

ers

es

n

e

... B-1

. B-2
-2
-2
B-3
-3

-4
4
-5

5
-6
-6
-6

-9
-9
A.9 AH = 7; ..Scroll Active Page DowA-3

A.10 AH = 8;Read Character/Attribute at Current Active Cursor PositioA-3

A.11 AH = 9; Write Character/Attribute at Current Cursor Position of a specified pagA-3

A.12 AH = 0Ah;Write Character at Current Cursor Position of a specified pagA-4

A.13 AH = 0Bh; ...Set Color PaleA-4

A.14 AH = 0Ch; ...Write Dot (graphics modeA-4

A.15 AH = 0Dh; ... Read Dot (graphics modA-4

A.16 AH = 0Eh;.. Write Teletype to Active PagA-4

A.17 AH = 0Fh;..Return Current Video SettinA-5

A.18 AH = 10h; ..Set Palette RegistA-5

A.19 AH=11h; ...Character Generator RoutinA-7

A.20 AH = 12h; Return Current EGA Settings/Print Screen Routine SelectioA-9

A.21 AH = 13h; .. Write String to Specified PageA-11

A.22 AH=1Ah; .. Display Combination CodeA-11

A.23 AH=1Bh;Return VGA Functionality and State InformationA-12

A.24 AH=1Ch; .. Save and Restore Video StatA-15

 Appendix B: Extended BIOS Function Calls

B.1 Scope..

B.2 BIOS Extensions...
B.2.1 Video BIOS Base Address... B
B.2.2 Calling Extended Functions... B
B.2.3 Compatibility..
B.2.4 Extended BIOS Services.. B
B.2.5 Function 00h - Set Display Mode... B
B.2.6 Function 01h - Set Display Controller State... B-
B.2.7 Function 02h - Set DAC State.. B
B.2.8 Function 03h - Program Specified Clock Entry.. B-
B.2.9 Function 04h - Short Query Function 0.. B
B.2.10 Function 05h - Short Query Function 1.. B
B.2.11 Function 06h - Short Query Function 2.. B
B.2.12 Function 07h - Query Graphics Hardware Capability and Capture Width InfoB-7
B.2.13 Function 08h - Query Installed Modes... B
B.2.14 Function 09h - Query Supported Mode.. B
B.2.15 Function 0Ah - Display Power Management Service (DPMS)..................... B-10
B.2.16 Function 0Bh - Display Data Channel (DDC) Service.................................. B-10
B.2.17 Function 0Ch - Save and Restore Graphics Controller Data......................... B-12
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential Preliminary TOC-7

Table of Contents

3
4
5

15

-16
-16

7
-17

.. C-1

C-2

. C-6

C-8
C-8
C-9

.. D-1

. D-2

3

2

3

14

5

7

18

9
9
9

0

-21
B.2.18 Function 0Dh - Get/Set Refresh Rate (CRT only)...B-12
B.2.19 Function 14h - Detect CRT/TV/DFP..B-1
B.2.20 Function 15h - Get/Set Active Display(s)...B-1
B.2.21 Function 16h - Get/Set TV Standard...B-1
B.2.22 Function 17h - Get TVOut Info..B-

B.3 Mode Table Structure...B
B.3.1 CRTC Parameter Table..B

B.4 RAGE 128 Internal Parameter Table Format..B-1
B.4.1 CRTC Parameter Table..B

 Appendix C: BIOS Header, Scratch Registers and Information Tables

C.1 Scope..

C.2 Video BIOS Header...

C.3 Scratch Registers..

C.4 Information Tables..
C.4.1 TV Information...
C.4.2 DFP Information...

 Appendix D: VESA BIOS Extension

D.1 Scope..

D.2 Status Information..

D.3 Function 00h - Return Super VGA Information... D-

D.4 Function 01h - Return Super VGA Mode Information... D-6

D.5 Function 02h - Set Super VGA Video Mode.. D-1

D.6 Function 03h - Return Current Video Mode... D-1

D.7 Function 04h - Save/Restore State... D-

D.8 Function 05h - Display Window Control... D-1

D.9 Function 06h - Set/Get Logical Scan Line Length.. D-1

D.10 Function 07h - Set/Get Display Start... D-

D.11 Function 08h - Set/Get AC Palette Format... D-1
D.11.1 Subfunction 0 - Set AC Palette Format.. D-1
D.11.2 Subfunction 1 - Get AC Palette Format... D-1

D.12 Function 09h - Set/Get AC Palette Data... D-2

D.13 Power Management Services... D
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
TOC-8 Preliminary Proprietary and Confidential

Table of Contents

23

4

... E-1

E-2

-8

-10
12

... F-1

F-2

. F-3

. F-5

. F-7

. F-8

-10

F-12

. F-19

. F-20

F-21

-24

F-26

. F-27

F-36

-39

F-40
D.13.1 VBE/PM Function 0 - Report VBE/PM Capabilities....................................D-21
D.13.2 VBE/PM Function 1 - Set Display Power State..D-21
D.13.3 VBE/PM Function 2 - Get Display Power State...D-21

D.14 Display Identification Extensions...D-
D.14.1 VBE/DDC Function 0 - Report VBE/DDC Capabilities...............................D-23
D.14.2 VBE/DDC Function 1 - Read EDID..D-2

 Appendix E: BIOS Hardware Configuration and Multimedia Tables

E.1 Scope..

E.2 BIOS Multimedia Table...

E.3 BIOS Hardware Configuration Table... E

E.4 BIOS Tables for RAGE 128 / RAGE THEATER Board... E-10
E.4.1 Multimedia Table.. E
E.4.2 Hardware Configuration Table.. E-

 Appendix F: CCE Command Packets

F.1 Scope..

F.2 Notation used this Section..

7.13 Type-0 CCE Packet...

F.3 Type 1 CCE Packet...

F.4 Type 2 CCE Packet...

F.5 Type 3 CCE Packet...

F.6 Summary of the CEE Packets... F

F.7 2D Packets...

F.8 NOP..

F.9 PAINT..

F.10 SMALL_TEXT..

F.11 HOSTDATA_BLT... F

F.12 POLYLINE..

F.13 SCALE...

F.14 TRANS_SCALE..

F.15 POLYSCANLINES... F

F.16 NEXTCHAR..
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential Preliminary TOC-9

Table of Contents

F-41

F-42

F-43
-43

-45

-46

F-47

-48

-49
-49

F-50
-51

-54
F-54
F-54
-54
-55
-55
-56

57
-58

-59

-1
F.17 PAINT_MULTI..

F.18 BITBLT_MULTI..

F.19 TRANS_BITBLT...
F.19.1 CLR_CMP_CNTL...F

F.20 PLY_NEXTSCAN..F

F.21 LOAD_PALETTE..F

F.22 SET_SCISSORS...

F.23 SET_MODE_24BPP...F

F.24 3D_RNDR_GEN_PRIM...F
F.24.1 VC_FORMAT...F
F.24.2 VC_CNTL...
F.24.3 FTLVERTEX..F

F.25 Interpretation of Vertices..F
F.25.1 Points (1)...
F.25.2 Lines (2)..
F.25.3 Polylines (3)...F
F.25.4 Triangles (4)..F
F.25.5 Triangle Fan (5)...F
F.25.6 Triangle Strip (6)...F

F.26 3D_RNDR_GEN_INDX_PRIM...F-
F.26.1 Vertex Array Format..F

F.27 NEXT_VERTEX_BUNDLE..F

 Appendix G: List of Tables

 Appendix H: List of Figures

 Appendix I: List of Example Code

 Appendix J: Revision History

J.1 SDK-G04000 Rev 0.01 (SD40001.pdf).. H
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
TOC-10 Preliminary Proprietary and Confidential

ples

the

mand

ance,
Chapter 1
Overview

1.1 Scope
This manual is a programming guide for the RAGE 128 graphics controller. The exam
that are provided show how to program typical 2D and 3D drawing operations. This
manual also provides details about various multimedia concepts.

For details about programming older generations of ATI graphics controller, refer to
mach64 Programmer’s Guide. To request this manual, contact the ATI Developer
Relations Department.

Background
The RAGE 128 is a fully integrated 128-bit graphics and multimedia accelerator. It
combines astoundingly fast 3D and 2D acceleration with advanced multimedia
capabilities. This accelerator incorporates new technologies such as Concurrent Com
Execution (CCE). CCE was previously known as Programming Model 4 (PM4). CCE
uses the RAGE 128’s bus mastering capabilities to deliver excellent drawing perform
as well as simplifying the programming effort.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 1-1

Major Features of the RAGE 128

ce

).

g,
1.2 Major Features of the RAGE 128
• Highly optimized 128-bit engine.

• Triple 8-bit palette DAC with gamma correction for true WYSIWYG color. Pixel
rates up to 250MHz (optional); 230MHz standard.

• Supports a variety of memory configurations for bandwidths of up to 2GB/s.

• Single Data Rate (SDR) SGRAM or SDRAM at up to 125MHz on a 128-bit interfa
(2GB/s).

• Double Data Rate (DDR) SGRAM at up to 125 MHz on a 64-bit interface (2GB/s

• SDR SGRAM or SDRAM at up to 143MHz on a 64-bit interface (1.1GB/s)

• Flexible graphics memory configurations:

• 2MB up to 32MB SDRAM or SDR/DDR SGRAM.

• DDC1 and DDC2B+ for plug and play monitors.

• Single-chip solution in 0.25µm, 2.5V CMOS technology.

• Package options available for specific features.

• Hardware acceleration for the following:

• BitBlt

• Line Draw

• Polygon/Rectangle Fill

• Bit Masking

• Monochrome Expansion

• Panning/Scrolling

• Scissoring

• Full ROP support and hardware cursor (up to 64x64x2)

• Game acceleration including support for Microsoft's DirectDraw, Double Bufferin
Virtual Sprites, Transparent Blit, and Masked Blit.

• Acceleration in 8-, 16-, 24-, 32-bpp modes.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
1-2 Proprietary and Confidential

A Chapter Summary of this Manual
1.3 A Chapter Summary of this Manual

Table 1-1 Chapter Summary

Chapter Description

1
Overview

Scope of the manual.
Overview of the contents.
Feature summary of the RAGE 128.

2
Using the RAGE 128

Basic programming guide.
A general understanding of the features and functions.

3
Getting Started

Using the RAGE 128 in accelerator mode:
Card detection, setting a display mode, engine initialization,
programming considerations.

4
Programmed I/O

Operations

Issues covering the accelerator engine:
Command FIFO queue
Programmed I/O operations (such as bit block transfers, line,
pattern, and rectangle drawing).

5
Concurrent Command
Execution Initialization

and Usage

Overview of the CCE programming model:
Setup and initialization of the CCE in various operational modes.

6
CCE Packets

Description of the CCE packets.
Programming examples for general engine operations (blts,
rectangle and line draws, etc.).

7
Advanced Topics

Advanced topics covering special features and capabilities:
Using the overlay scalar and front-end scalar.
Using the bus mastering features.

Appendix A BIOS Function Calls

Appendix B Extended BIOS Function Calls

Appendix C BIOS Header, Scratch Registers and Information Tables

Appendix D VESA BIOS Extension

Appendix E BIOS Hardware Configuration and Multimedia Tables

Appendix F CEE Command Packets
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 1-3

Notations and Conventions Used in this Manual

tions

r

ly for

 are
1.4 Notations and Conventions Used in this Manual
A mnemonic is used to identify the name of a hardware register. The naming conven
for registers and/or bit fields within a register are as follows:

• Register_Mnemonic

• Register_Mnemonic[Bit_Numbers]

• Field_Name@Register_Mnemonic

The following example is the mnemonic for the Configuration Chip ID register:

• CONFIG_CHIP_ID

Continuing the above example, the Product Type Code field within the above registe
occupies bit positions [0] through [15]. The examples below describe this field in two
ways:

• CONFIG_CHIP_ID[15:0]

• CFG_CHIP_TYPE@CONFIG_CHIP_ID

The second convention will be the preferred one, with the first convention used most
describing unnamed fields.

Hexadecimal numbers will either be prefixed with “0x” (C-style) or appended with “h”
(Intel assembly-style). Binary numbers will be appended with “b”. All other numbers
in decimal.

Sample code and functions will be typeset in a courier font.

Example: performing an operation

// Sample Function

void Sample_function (void)

{

 printf ("This is a sample function\n");

} // Sample_function
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
1-4 Proprietary and Confidential

Nomenclature and Conventions

s. The

.

ity.

ple
ther
 of
1.5 Nomenclature and Conventions
These conventions apply to the RAGE 128 Register Reference Manual.

1.5.1 Register and Field Names

An upper-case mnemonic represents the name of a hardware register and field name
naming conventions for registers and bit fields are as indicated below:

REGISTER_MNEMONIC
Example: CONFIG_CHIP_ID is the mnemonic for the Configuration Chip ID register

REGISTER_MNEMONIC[Bit_Numbers]
- OR-
FIELD_NAME@REGISTER_MNEMONIC

For example, CONFIG_CHIP_ID[15:0] refers to the bit field that occupies bit
positions [0] through [15] within this register.

CFG_CHIP_TYPE@CONFIG_CHIP_ID gives the field name CFG_CHIP_TYPE
(Product Type Code) instead of the bits position.

1.5.2 Numeric Representations

• Hexadecimal numbers are appended with “h” whenever there is a risk of ambigu
Other numbers are assumed to be in decimal.

• Registers (or fields) of identical function are sometimes indicated by a single
expression in which the part of the signal name that differs is enclosed in [] brackets.
For example, the eight Host Data registers — HOST_DATA0 through to
HOST_DATA7 — are represented by the single expression HOST_DATA[7:0] .

1.5.3 Register Description

All registers in this document are described with the format of the self-explained sam
table below. All offsets are in hexadecimal notation, while programmed bits are in ei
binomial or hexadecimal notation. (Note: sometimes not shown are the indirect type
byte offsets, e.g., CFG, PLL, VGA, etc., which will be indicated on the appropriate
registers).
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 1-5

Nomenclature and Conventions
This page intentionally left blank.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
1-6 Proprietary and Confidential

. The
Chapter 2
Programming Basics

2.1 Scope
This chapter details the basics about the RAGE 128’s operation and drawing modes
following topics are covered:

• Functional block diagram of the RAGE 128.

• Operation modes.

• Accelerator programming modes.

• Review of imaging terminology.

• Display modes and switching modes.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 2-1

Overview
2.2 Overview

Host Application

AGP or PCI GART memory

Ring
Buffer

Indirect
Buffer

text

V G A
Control ler

Accelerator Control ler

CCE FIFO Buf fer

CCE Microengine

Command FIFO Buf fer

Frame Buffer

3D
Setup

Engine

3D
Render
Engine

2D
Render
Engine

PCI
Host Interface

I/O

P
IO

CCE Bus Master

Rage 128

V
G

A
 P

IO

C
C

E
 P

IO

AGP Host Interface

Figure 2-1. RAGE 128 Structure and Data Flow
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
2-2 Proprietary and Confidential

Overview

tailed
8’s
This chapter presents a basic description of the functional blocks in this diagram. De
descriptions are presented in subsequent chapters. For a summary of the RAGE 12
functional blocks, refer to Table 2-1. For a summary of the RAGE 128’s buffers, refer to
Table 2-2.

Table 2-1 RAGE 128 Functional Blocks

Functional Unit Purpose

Accelerated Graphics
Port (AGP) Interface

Transfers data from the ring buffer (located in the system memory)
to the RAGE 128’s CCE FIFO buffer without direct involvement of
the CPU.

VGA Controller Manages pixel operations under VGA mode.

CCE Microengine
Parses the command packets from the host application and places
the results into the Command FIFO buffer.

2D Render Engine Performs 2D primitive rasterization.

3D Render Engine Performs 3D primitive rasterization.

3D Setup Engine Performs 3D primitive setup operations.

Table 2-2 RAGE 128 Buffers

Buffer Name Size Purpose

CCE FIFO
Buffer

192 DWORDs
Contains command packet data queued for processing
by the micro controller. Only used in CCE-programming
mode.

Command FIFO
Buffer

192 DWORDs

Contains register/data pairs for processing by the
3D-setup, 3D-render, and 2D-render engines (i.e., GUI
engine). Data is written directly in PIO-programming
mode, and streamed from the micro controller in
CCE-programming mode.

Frame Buffer

Depends on the
amount of video
memory installed.
Ranges from 8MB
to 32MB.

Contains all on-screen and off-screen rendering
buffers, such as: drawing, stencil and z buffers,
bitmaps, and texture maps.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 2-3

Operation Modes

emory

hen
g
s are
ame

rd

d for

GE

he
2.3 Operation Modes
The RAGE 128 operates in two distinct modes:

• VGA mode.

• Accelerator mode.

These modes are mutually exclusive. However, they share the same frame-buffer m
and I/O ports. They are described in the following sections.

2.3.1 VGA Mode

VGA (Video Graphics Adapter) is an established industry standard created by IBM. W
operating in VGA mode, the host application draws directly into the frame buffer usin
the VGA controller. The accelerator controller is disabled and no rendering operation
accelerated. The VGA controller and the data path from the host application to the fr
buffer are shown in the figure (refer to Figure 2-1.). The VGA Controller registers are
programmed using conventional I/O.

There are many published texts that describe VGA programming. Consequently, this
manual does not cover programming the VGA controller. For a comprehensive,
informative source on this subject, refer to Programmer's Guide to the EGA, VGA, and
Super VGA Cards by Richard F. Ferraro.

For Super VGA programming, the RAGE 128 supports the Video Electronics Standa
Association (VESA) Video BIOS Extension (VBE) 2.0 programming interface. This
interface was created by VESA to provide a standrard, hardware independent metho
using Super VGA display modes. Contact VESA for more information about VBE.

2.3.2 Accelerator Mode

When operating in accelerator mode, rendering operations are performed by the RA
128's accelerator controller. The VGA controller is disabled. The host application is
limited to setting up the accelerator controller, and the controller renders directly to t
frame buffer.

The accelerator controller contains the following three engines:

• 2D Rendering Engine that performs 2D rasterization.

• 3D Setup engine that performs 3D primitive setup operations.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
2-4 Proprietary and Confidential

Operation Modes

ngine
• 3D Render Engine that performs 3D rasterization.

The three engines are collectively referred to as the Graphical User Interface (GUI) e
(refer to Figure 2-1.).

The following two modes are used to program the GUI engine:

• Programmable Input and Output (PIO) mode.

• Concurrent Command Execution (CCE) mode.

These programming modes are described in the following sections.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 2-5

Drawing Modes in Acceleration-operation Mode

eued
.
the

try
nal

o

uffer.

ency
2.4 Drawing Modes in Acceleration-operation Mode

Programmable I/O (PIO) Mode
In this mode, the host application programs the GUI engine by writing directly to the
RAGE 128's memory-mapped registers. The registers are written through one of the
RAGE 128's two register apertures over the bus interface. The register writes are qu
in the RAGE 128's internal 192 entry Command FIFO buffer as register-datum pairs
These Command FIFO buffer entries are processed by the GUI engine to draw into
frame buffer.

To see the data path from the host application to the Command FIFO, refer to Figure 2-1.

For more details about the PIO-mode programming, refer to Chapter 4.

For more details about the RAGE 128's register apertures, refer to 2.6.

Concurrent Command Execution (CCE) Programming Mode
In this mode, the host sends commands to the RAGE 128 in the form of command
packets. A command packet is a data block that consists of a header followed by a
variable size data body. Within the RAGE 128, the packets are queued in the 192 en
CCE FIFO buffer. A micro controller processes the packets, produces the conventio
register data, and feeds this data to the Command FIFO buffer. The Command FIFO
buffer data is processed (as it is in PIO mode) to render into the frame buffer.

The host application transfers packets to the CCE FIFO buffer using the following tw
methods:

• Write them directly into the CCE FIFO buffer through memory-mapped register
writes over the bus interface.

• Queue them in system memory buffers and bus-master them to the CCE FIFO b

The second method is by far the most efficient for programming the RAGE 128. ATI
highly recommends using the bus-mastered CCE programming mode as the primary
programming method. Streaming packets in this manner enables significant concurr
between the host and the RAGE 128. In addition, there are several predefined
single-purpose packets that greatly simplify the programming of common drawing
operations.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
2-6 Proprietary and Confidential

Drawing Modes in Acceleration-operation Mode

 CCE

GP
lity

uffer

 top.
inter
the
on.

al
The RAGE 128 uses the following two mechanisms for bus-mastering packets to the
FIFO buffer:

• Ring buffer

• Indirect buffer

These mechanisms are described in the following sections.

Ring Buffer
The ring buffer is a continuous block of memory allocated by the host application in A
or PCI GART memory. The PCI GART is a mechanism for simulating AGP functiona
on the RAGE 128 over the PCI bus. For more details about the PCI GART, refer to 2.6.6.
The host and RAGE 128 treat this buffer as a circular buffer by wrapping back to the
starting address when they reach the end. The starting address and the size of the b
are passed to the RAGE 128 when initializing the CCE bus-mastering mode.

The application copies packets into the ring buffer in consecutive order starting at the
It instructs the RAGE 128 where to read the next packet by writing to a CCE write-po
register. The RAGE 128 triggers bus-mastering operations to transfer packets from
ring buffer to its CCE FIFO buffer according to watermarks set during CCE initializati
After completing the transfer, the RAGE 128 uses bus-mastering to update a host
application read-pointer to indicate where it has read to in the ring buffer. The physic
address of this pointer is passed to the RAGE 128 during CCE initialization.

To view a diagram of the ring buffer, refer to Figure 2-2.

For more details about programming the ring buffer refer to Chapter 5.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 2-7

Drawing Modes in Acceleration-operation Mode

hanism
lients

 in
y do

 the
t to
Ring Buffer Queue Server
For multitasking operating systems where multiple clients may require synchronized
access to the graphics resources, it may be beneficial to employ a queue server mec
to arbitrate and control access to the ring buffer. This mechanism could enumerate c
and use semaphores to synchronize and protect access.

For an example of how to submit packets using such a mechanism, refer to Chapter 5.

Indirect Buffer
The indirect buffer is a contiguous block of memory allocated by the host application
AGP or PCI GART memory. The host and RAGE 128 treat this as a linear buffer. The
not employ any buffer wrapping mechanisms for the indirect buffer.

The indirect buffer is similar to the ring buffer in that the host places packets in it and
RAGE 128 transfers them out using bus-mastering. But while the ring buffer is mean
be continuously updated, which results in content being constantly overwritten, the

AGP/PCI
Interface

Queue
Server

Driver(s)

CCE FIFO Buffer

RAGE 128HOST

P
1

P
n

P
2

free area

packet

Ring Buffer

Figure 2-2. The Ring Buffer
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
2-8 Proprietary and Confidential

Drawing Modes in Acceleration-operation Mode

etely
ts
ced

nd

he
ay be
ers, so
uffer
indirect buffer may be filled with static packets that are merely updated but not compl
overwritten. This is a more efficient way to handle common or frequently used packe
such as blits, rectangle fills, etc. One additional difference is that packets may be pla
and accessed from the indirect buffer in arbitrary order.

A packet transfer is initiated by writing the offset from the start of the indirect buffer a
the size of the packet to specific registers. For more details about this procedure, refer to
5.3.

The most efficient combination is to use both the ring buffer and the indirect buffer. T
indirect buffer may be used for storing frequently used packets, and the ring buffer m
used for general command streaming. Packets can be used to write to specific regist
the register writes that trigger indirect buffer transfers can also be streamed as ring b
packets. If the ring buffer is not used, these registers may be written through PIO.

To view a conceptual diagram of the indirect buffer, refer to Figure 2-3.

AGP/PCI
Interface

Driver(s) CCE FIFO Buf fer

RAGE 128HOST

packet

text

P

P

P

P

Indirect Buffer

f ree space

Figure 2-3. The Indirect Buffer
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 2-9

Review of Imaging Terminology

lly

nd

 and

he

al
2.5 Review of Imaging Terminology
This section describes some background and terms about computer imaging.

2.5.1 Raster Image

Due to CRT (Cathode Ray Tube) technology, an image is broken into a number of equa
spaced scanlines. Each scanline may be further broken into a number of
smallest-viewable elements, called pixels. This type of image is commonly referred to as
raster image.

The process of breaking an ordinary image into a raster image is called rasterization. This
process allows an M-by-N array to represent an image, where:

• M represents the width of the image.

• N represents the height of the image (with its x-coordinate pointing to the right a
y-coordinate pointing downwards).

The value of an element in this array represents the pixel’s color intensity. This setup
allows the video memory to contain the features of an image (i.e. image dimensions
color depth).

The screen image is the case where the raster image covers the entire CRT screen. T
origin of the coordinate system is at top-left corner of the screen, where:

• The width of the image equals the number of pixels per scanline of the screen.

• The height is the number of scanlines that the screen has.

2.5.2 True RGB Color

Color in the real world is called natural color and it is represented as an analog quantity.
Color from a CRT screen is called digitized color and it is represented as a digital
quantity. The digitized-color value is an approximate of the natural-color value. The
analog value can represent by an infinite number of color values. However, the digit
value is limited in the number of unique (i.e. distinctive) colors.

For example, the maximum number of distinctive colors currently defined for this
approximation is about 16 million (i.e. 224).
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
2-10 Proprietary and Confidential

Review of Imaging Terminology

ent
4 bits

ted

olors
d

d
 0’s
ough

ory:
Each digitized color is represented by a combination of three color components (Red,
Green, and Blue). The intensity of each component is divided into 256 levels. Zero
intensity represents the lowest value and ‘255’ represents the highest. Each compon
needs 8 bits. Therefore, to represent a color made up of a R, G, and B component, 2
are needed. This representation of digitized color is referred to as the True RGB color.

2.5.3 Representing Pixels

A RAGE 128 can display monochrome and color images.

• Monochrome images refer to text.

• Color images refer to digitized color photographs, movies, and computer-genera
color images.

Monochrome Images
Monochrome images are composed of pixels that can have just one of two digitized c
(i.e. black and white). Each pixel’s color is represented by one bit (i.e. ‘0’ for black an
‘1’ for white).

The depth of the pixel is one bit per pixel (bpp). Monochrome pixels may be assigned
with any two digitized colors, one representing the foreground color, such as white, and
the other representing the background color, such as black.

To display blue-colored text on a background of white, a ‘0’ represents the color blue and
a ‘1’ represents the color white. This type of treatment to monochrome images is terme
color expansion. In fact, the realization of pixels in a mono image is done by mapping
and 1’s onto background and foreground colors represented in the RGB format, alth
the memory representation of the pixels is one bpp.

Formats for Various Color Images
Color images may be represented in 8-, 15-, 16-, 24-, and 32-bpps formats (i.e. 28, 215,
216, 224 colors respectively).

The number of colors that can be displayed in the 32-bpp format is 224 because the most
significant eight bits of the 32 bits are not used. Using the byte as a measure of mem

• One byte to represent a pixel for the 8-bpp format.

• Two bytes for the 15- and 16-bpp formats.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 2-11

Review of Imaging Terminology

 the

color
• Three bytes for the 24-bpp format.

• Four bytes for the 32-bpp format.

1-bpp Format

8-bpp Format
The value of a pixel does not represent the intensity of a color. Instead, it represents
index of the color table, called the color palette. The palette stores all of the possible
colors that could be used. The host application uses this value to point to a specific
in the palette. Color represented in the 8-bpp format is known as pseudo-color.

Table 2-3 1-bpp Format (left-to-right)

1-bpp, BYTE_PIX_ORDER = 0 (left-to-right), Draw Engine Only
Structure of the Drawing Data as Used by the RAGE 128

19 1A 1B 1C 1D 1E 1F 20 11 12 13 14 15 16 17 18 9 A B C D E F 10 1 2 3 4 5 6 7 8

Drawing Data Placed in Video Memory

1 2 3 4 5 6 7 8
LSB x 9 A B C D E F 10 11 12 13 14 15 16 17 18

19 1A 1B 1C 1D 1E 1F 20
x MSB

Table 2-4 1-bpp Format (right-to-left)

1-bpp Format, BYTE_PIX_ORDER = 1 (right-to-left), Draw Engine Only
Structure of the Drawing Data as Used by the RAGE 128

20 1F 1E 1D 1C 1B 1A 19 18 17 16 15 14 13 12 11 10 F E D C B A 9 8 7 6 5 4 3 2 1

Drawing Data Placed in Video Memory

8 7 6 5 4 3 2 1 10 F E D C B A 9 18 17 16 15 14 13 12 11 20 1F 1E 1D 1C 1B 1A 19

Table 2-5 8-bpp Pseudo-color Format

8-bpp Pseudo-color Format
Structure of the Drawing Data as Used by the RAGE 128

4
(MSB)

3 2 1
(LSB)

Drawing Data Placed in Video Memory

1
(LSB)

2 3 4
(MSB)
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
2-12 Proprietary and Confidential

Review of Imaging Terminology

d
15-bpp, aRGB, or 1555 Format
This format uses two bytes to represent the three color components (Red, Green, an
Blue). Each component uses five bits to represent its intensity.

• Bit [15] is not used (shown in the table as ‘a’).

• Bits [14:10] represent red.

• Bits [9:5] represent green.

• Bits [4:0] represent blue.

16-bpp, RGB, or 565 format
This format is similar to the 15-bpp format:

• Bits [15:10] represent red

• Bits [10:5] represent green

• Bits [4:0] represent blue.

Table 2-6 15-bpp, aRGB, or 1555 Format

15-bpp, aRGB, 1555 Format
Structure of the Drawing Data as Used by the RAGE 128

Pixel #2
aRRRRRGGGGGBBBBB

Pixel #1
aRRRRRGGGGGBBBBB

Drawing Data Placed in Video Memory

Pixel #1 low
GGGBBBBB

Pixel #1 high
aRRRRRGG

Pixel #2 low
GGGBBBBB

Pixel #2 high
aRRRRRGG

Note: This format is similar to the 16-bpp format. But this format uses one alpha bit, the dummy bit (i.e. ‘a’).
Sometimes this dummy bit maybe used for 3D rendering. For typical applications, this bit not used.

Table 2-7 16-bpp, RGB, 565 Format

16-bpp, RGB, 565 Format
Structure of the Drawing Data as Used by the RAGE 128

Pixel #2
RRRRRGGGGGGBBBBB

Pixel #1
RRRRRGGGGGGBBBBB

Drawing Data Placed in Video Memory

Pixel #1 low
GGGBBBBB

Pixel #1 high
RRRRRGGG

Pixel #2 low
GGGBBBBB

Pixel #2 high
RRRRRGGG
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 2-13

Review of Imaging Terminology

rated

bit

ht

e
24-bpp Format
Each color component uses a byte to represent its intensity.

32-bpp, RGBa, or 8888 Format
This format is similar to the 24-bpp format with the addition of a dummy byte.

2.5.4 Pixels

The RAGE 128 supports pixel depths of 1, 8, 15, 16, and 32 bits per pixel. When ope
in the 24-bpp format mode, some software assistance is required.

The pixels are consumed from the most significant bit (MSB) to the least significant
(LSB) (or vise versa, depending on the rage 128’s configuration).

The following shows the bit definitions of the pixel formats in BYTE and DWORD
representations (i.e., this is the ‘little endian’ representation):

• The ordinal values represent the ordering of the pixels in memory for a left to rig
pixel trajectory beginning on a DWORD boundary.

• The ordinal value ‘1’ represents the position in memory of the left-most pixel in th

Table 2-8 24-bpp Format (display only)

24-bpp Format (display only)
Structure of the Drawing Data as Used by the RAGE 128

B2
G3
R4

R1
B3
G4

G1
R2
B4

B1
G2
R3

Drawing Data Placed in Video Memory

B1
G2
R3

G1
R2
B4

R1
B3
G4

B2
G3
R4

Note: B2 means pixel 2, blue component; R1 is pixel 1, red component, etc.

Table 2-9 32-bpp, RGBa, or 8888 Format

32-bpp, RGBa, or 8888 Format
Structure of the Drawing Data as Used by the RAGE 128

a R G B

Drawing Data Placed in Video Memory

B G R a
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
2-14 Proprietary and Confidential

Review of Imaging Terminology

uired

r
DWORD.

• The color components are denoted as R, G, and B.

2.5.5 Pitch

In ATI terminology, pitch measures the size of memory for representing a scanline of
pixels. Due to the RAGE 128’s design, this measure must satisfy the following two
requirements:

• Pitch must be an integer multiple of eight pixels.
If the number of pixels per scanline does not meet this requirement, add the req
number of dummy pixels to the scanline.

• The memory size of a pitch must be a multiple of 16 bytes.

If we denote the number of pixels per scanline by m, the number of added dummy pixels
by n, and the number of bytes used to representing a pixel by l, the two requirements can
be written as:

Since l is restricted to values 1/8 for monochrome images, and 1, 2, 3, and 4 for colo
images, it is easy to show that Equation 2.1 is implied by Equation 2.2.

Using Equation 2.2, the number of dummy pixels can be calculated by the following
equation:

Using Equation 2.3, the pitch can be written as:

08 MOD)(=+ nm Equation 2.1

016 MOD)(=+× nml Equation 2.2










=−
=−
=−
=−

=

4 4 MOD 4

2 8 MOD 8

3 ,1 16 MOD 16

8/1 128 MOD 128

lm

lm

lm

lm

n Equation 2.3
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 2-15

Review of Imaging Terminology

tmap,
ch of
size is
le the
ust

h can

e

eas:

ntain
xels).

 the

at
The size of memory for the pitch is:

Equation 2.3, Equation 2.4, and Equation 2.5 are also applicable to the pitch of the bi
where m corresponds to the width of the bitmap. According to these equations, the pit
an 800x600 screen can be 100 units of eight pixels, and the corresponding memory
1600 bytes (2 x 100 x 8) provided each pixel is represented by 16-bit color. To enab
block-write capability of the RAGE 128, the second requirement on defining a pitch m
be changed to 128-byte alignment. This leads to a modification of Equation 2.2, whic
be rewritten as:

In addition, a corresponding modification to the calculation of dummy pixels has to b
made; this effort is left for you.

2.5.6 Video Memory

The RAGE 128 uses the video memory (i.e. the frame buffer) to display geometrical
images on the CRT’s screen. The frame buffer is further divided into the following ar

• The on-screen area represents the entire screen image.

• The dummy area makes up the pitch of screen due to the hardware requirement.

• The off-screen area stores information about the image (e.g. bitmaps). There are
some conditions when there is no off-screen area (e.g. the video memory may co
the on-screen data and any unused areas contain data about the depth of the pi

As a result of the equations developed in the previous section, it is easy to calculate
allocation of the video memory when a display configuration is given.

For example, the required display configuration is 800x600 pixels in the 16-bpp form
mode. Then, the calculated memory size for the on-screen area is 960,000 bytes.

8

nm
Pitch

+= Equation 2.4

8××= PitchlzePitchMemSi Equation 2.5

0128 MOD)(=+× nml Equation 2.6
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
2-16 Proprietary and Confidential

Review of Imaging Terminology

ideo
GE

orner
creen

eo

s
Therefore, the minimum size for the video memory must be 1MB. If the size of the v
memory is 4MB, there will be more than 3MB left over for the off-screen area. The RA
128 can support up to a maximum of 32MB of video memory.

Video Memory Addressing
Conventionally, the lowest address of the video memory corresponds to the top-left c
of the on-screen area, and the highest address to the bottom-right corner of the off-s
area.

For example, the video memory is 4MB. Then, the following conditions are true:

• The top-left corner of screen corresponds to address 0.

• The bottom-right corner of the off-screen area corresponds to 0xFFFFF.

The RAGE 128 addresses the video memory from zero to the upper bound. The vid
memory address seen by RAGE 128 is called the Physical Memory Address.

To begin drawing to the top-left corner of the CRT screen, set registers SRC_OFFSET and
DST_OFFSET to zero. These two registers can be set to any value within the addres
space of video memory.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 2-17

Review of Imaging Terminology
x

y

On-screen area

S
cr

ee
n

H
ei

gh
t

Screen width

Screen Pi tch

Off-screen area

Unused
area

(0, 0)

(M-1, N-1)

Dummy area

Figure 2-4. Video Memory
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
2-18 Proprietary and Confidential

Memory Apertures

he
he
f they

 the

e it
d on a

less
ress
2.6 Memory Apertures
The RAGE 128 requires memory apertures from the system. These apertures map t
video memory and registers onto the host’s memory space. By using this mapping, t
host application can access the frame buffer and the memory-mapped registers as i
were part of the system memory.

The following are the types of apertures that exist within the system space:

• The register aperture is used for the memory-mapped registers that are related to
RAGE 128.

• The video aperture.

Normally, the apertures are located somewhere within the 4GB address space wher
does not conflict with the system (host) memory. Further, an aperture must be locate
32MB boundary.

The following diagram shows the typical memory organization for the RAGE 128. Un
otherwise specified, all addresses in the register definition refer to a 64MB virtual add
space.

The following groups are used:

• The first 32MB map to the frame buffer space.

• The next 32MB map to the AGP/PCI space, specifically:
AddressAGP = AGP_base + (offset - 32MB)
AddressPCI = Physical address in BM_GUI_TABLE.

The following registers are used to point to the apertures:

• Registers REG_BASE and CONFIG_REG_1_BASE point to the register apertures.

• Registers CONFIG_APER_0_BASE and CONFIG_APER_1_BASE point to the
video aperture.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 2-19

Memory Apertures

s
ry
nt
2.6.1 VGA Memory Aperture

When enabled for VGA, the RAGE 128 claims the standard VGA resources. The bit
contained in GRPH_ADRSEL register determine the position and size of the VGA memo
aperture. For most VGA graphics modes, the aperture is 128KB and starts at segme
0xA000.

(free space
or other devices)

(free space
or other devices)

System Memory

0 MB

1 MB

32 MB (var ies)

System Memory

Frame Buf fer

AGP Sys tem
Memory Image

Video BIOS C000h:0000h
C800h:0000h

VGA Aper ture

A000h:0000h

Convent iona l Memory

0000h:0000h

System BIOS
E000h:0000h
FFFFh :FFFFh

Offset 0

Frame Buf fer
Expans ion Area

Of fse t (CONFIG_MEMSIZE-1)

Of fse t AGP_APER_OFFSET

CONFIG_APER_SIZEAGP Sys tem
Memory Image
Expans ion Area Of fse t (AGP_APER_OFFSET +

AGP_APER_SIZE - 1)

4 GB

(free space
or other devices)

Conf igurat ion, Display &
Mul t imedia Registers

Read-only Image of PCI
Conf igurat ion Space

ProMo 4 FIFO Access

Render ing Engine (GUI)
Registers
(F IFOed)

Offset 0h

Offset 0F00h

Offset 1000h

Offset 1400h

Linear Aperture 0

C O N F I G _ A P E R _ 0 _ B A S E

Linear Aperture 1

C O N F I G _ A P E R _ 1 _ B A S E

Of fse t (CONFIG_MEMSIZE_EMBEDDED-1)

CONFIG_REG_APER_SIZE

(free space
or other devices)

Register Aperture 0R E G _ B A S E
(in PCI Conf ig space)

(free space
or other devices)

Register Aperture 1
C O N F I G _ R E G _ 1 _ B A S E

Figure 2-5. Memory Map
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
2-20 Proprietary and Confidential

Memory Apertures

tem
000

s the
pped
also
ed

ng up
en

E
 also

ding
on
2.6.2 Video BIOS

To relocate the RAGE 128’s video BIOS, using the PCI configuration space. The sys
BIOS will normally shadow the entire BIOS image to the area starting at segment 0xC
during system initialization.

2.6.3 Register Apertures

There are two memory-mapped register apertures in the RAGE 128. Each reference
entire set of memory-mapped registers. Under the Intel architecture, one may be ma
for UnCached (UC) access, and the other for Write Combining (WC) access. WC is
uncached, but it is faster because it uses an out-of-order write buffer. The WC-mapp
aperture may be used where speed is essential (e.g, when setting 3D states or setti
primitives). The UC-mapped aperture may be used when order is important (e.g, wh
initiating drawing operations).

Under the PowerMac architecture, the second aperture may be used for big-endian
memory access.

Purpose
The register apertures contain all direct-accessed registers that are found in the RAG
128, except for the VGA and PCI configuration registers. In addition, these registers
have the index/data pairs used for all indirectly accessed registers and memories.

Location
These registers are re-locatable. Base address of register aperture 0 is:

• Determined by the REG_BASE register (found in the PCI configuration space), or

• Readable in the I/O register aperture using MM_INDEX <= 0xF18 and reading
MM_DATA.

Base address of register aperture 1 is determined by CONFIG_REG_1_BASE, which can
be read in register aperture 0 once its base has been found as indicated above. Rea
CONFIG_REG_1_BASE is the only method of determining register aperture 1’s locati
that is forward compatible with future generations of the hardware.

Size
The size will grow for future generations of the RAGE 128. The contents of the
CONFIG_REG_APER_SIZE register contains the sizes for each register aperture.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 2-21

Memory Apertures

e

 0.
 1.

Memory Map
The following table shows the memory map.

2.6.4 Linear Memory Apertures

There are two copies of the linear memory aperture in the RAGE 128. Each copy is
identical. The reason for two copies is to allow each to be independently marked as
big-endian or little-endian in the PowerMac environment. For Wintel architectures, th
second aperture may be used, but there is no valid reason to do so.

Purpose
The linear memory apertures allow access to the frame buffer memory, and for AGP
systems to the AGP memory as seen by the RAGE 128.

Location
These apertures are re-locatable.

The CONFIG_APER_0_BASE register determines the base address of linear aperture
The CONFIG_APER_1_BASE register determines the base address of linear aperture
Both these registers can be read in any register aperture.

Size
The size of these registers will grow for future generations of the RAGE 128. The
CONFIG_APER_SIZE register contains the size of each linear aperture.

Frame Buffer

Table 2-10 Memory Map

From To Description

0x0000 0x00FF
Non-GUI registers, also directly accessible in IOR
space.

0x0100 0x0EFF Non-GUI registers.

0x0F00 0x0FFF Read-only copy of PCI configuration space.

0x1000 0x13FF CCE FIFO direct access.

0x1400 0x1FFF GUI registers.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
2-22 Proprietary and Confidential

Memory Apertures

ip
 the

y.

 the

the
n AGP
hly

GP

not
e

ry
rds,

hanism.

base

cated
The frame buffer image occupies the area in each aperture from offset 0 to
CONFIG_MEMSIZE-1.

If CONFIG_MEMSIZE_EMBEDDED is greater than zero, the RAGE 128 uses an on-ch
memory for the first piece of the frame buffer. This embedded memory is included in
CONFIG_MEMSIZE total. Currently, the RAGE 128 does not have any embedded
memory. A future RAGE 128 model is planned to incorporate this embedded memor
The RAGE 128 supports up to 32MB of frame buffer memory.

2.6.5 AGP System Memory Image

Each linear aperture also contains an image of the AGP system memory as seen by
RAGE 128.

Typically, the host application would directly access the AGP system memory using
system processor. Since using this AGP image to access AGP memory generates a
slave and an AGP bus master cycle for each access (or group of accesses), it is hig
inefficient; therefore, this method is not recommended.

Use this AGP image for debugging and allowing a method for flushing out pending A
cycles still in the host chipset (before software directly accesses system memory).

The AGP image starts at offset AGP_APER_OFFSET in each linear aperture.

The AGP_APER_SIZE register contains the size of the AGP memory. This register is
a number, but an enumerated type that must be converted into a number (refer to th
register definition).

The RAGE 128 supports up to 32MB of AGP memory.

2.6.6 RAGE 128 PCI GART

The RAGE 128 provides a mechanism for accessing system memory as AGP memo
over the PCI bus. This mechanism allows up to 32MB of system memory on AGP ca
and up to 4MB on PCI cards, to be used as an AGP area using a scatter gather mec

To use this feature, a 32KB table of page entries must be prepared and its physical
address must be written to the PCI_GART_PAGE register. The table must be 4KB
aligned. Each table entry must contain the physical base address of a 4KB page allo
from system memory for the AGP area.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 2-23

Memory Apertures
The PCI GART table is enabled by setting bit [0] of PCI_GART_PAGE to ‘0’. For AGP
systems, this bit must be explicitly set to ‘1’ during initialization to disable the PCI
GART.

To force use of the PCI GART on AGP-capable systems, these additional steps are
necessary:

• The BM_CHUNK_0_VAL:BM_PTR_FORCE_TO_PCI field must be set to ‘1’.

• The BM_CHUNK_0_VAL:BM_RD_FORCE_TO_PCI field must be set to ‘1’.

• The BM_CHUNK_0_VAL:BM_GLOBAL_FORCE_TO_PCI field must be set to ‘1’.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
2-24 Proprietary and Confidential

Memory Apertures
C O N F I G _ A P E R _ 1 _ B A S E
(io reg)

C O N F I G _ A P E R _ S I Z E
 (io reg)

A G P _ A P E R _ S I Z E
(offset) (io reg)

A G P _ A P E R _ O F F S E T
 (io reg)

C O N F I G _ M E M _ S I Z E
(offset) (io reg)

C O N F I G _ M E M _ S I Z E _ E M B E D D E D
(offset) (io reg)

Unused -Rese rved

CMD/DATA
Memory Pool
RIng Buf fe r +

WorkBu f fe rs +
Tex tu res

(32MB in AGP)

Driver Memory Space
(Virtual Mem

Linear Flat 32)

Physical Memory Space Rage128 Registers

Memory Mapped Regs
8KB USWC

(may change in
 future chips)

Linear Frame Buffer
USWC

(up to 32MB rage128)
(May Change in future)

AGP - UC
32MB unused

AGP - USWC
32MB

PCI recogn ized Memory
Mapped Aper tu re

(U S W C 8 K B [may grow])

REG_BASE (PC ICon f ig)

C O N F I G _ R E G _ A P E R _ S I Z E
(io reg)

Unused -Rese rved

PCI recogn ized Memory
Mapped Aper tu re

(UC 8KB [may grow])

C O N F I G _ R E G _ 1 _ B A S E
[of fset] (io reg)

Memory Mapped Regs
8KB UC

(may change in
 future chips)

U n u s e d

A G P S y s t e m M e m o r y
Image Expans ion Area
UNUSED BY DRIVER

AGP Sys tem Memory Ima ge
UNUSED BY DRIVERS

Unused F rame Bu f fe r A rea

Frame Bu f fe r
(May inc lude embedded)

U n u s e d

A G P S y s t e m M e m o r y
Image Expans ion Area
UNUSED BY DRIVER

AGP Sys tem Memory Ima ge
UNUSED BY DRIVERS

Unused F rame Bu f fe r A rea

Frame Bu f fe r
(May inc lude embedded)

Li
ne

ar
 A

pe
rt

ur
e

1
Li

ne
ar

 A
pe

rt
ur

e
0

C O N F I G _ A P E R _ 0 _ B A S E
(io reg)

Figure 2-6. AGP Memory Architecture - Software Layout
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 2-25

Memory Apertures
PCI Scatter Gather Table

CONFIG_APER_1_BASE
(io reg)
32MB

fixed in non AGP system

S/W Control . Up to 32MB

PCI_GART_PAGE
 (io reg)

CONFIG_MEM_SIZE
(offset) (io reg)

C O N F I G _ M E M _ S I Z E _ E M B E D D E D
(offset) (io reg)

Unused-Reserved

CMD/DATA
Memory Pool
RIng Buffer +

WorkBuffers +
Textures

(32MB in AGP)

Dr iver Memory Space
(Vir tual Mem

Linear Flat 32)

Phys ica l Memory Space Rage128 Regis ters

Memory Mapped Regs
8KB USWC

(may change in
 future chips)

Linear Frame Buffer
USWC

(up to 32MB rage128)
(May Change in future)

AGP - UC
32MB unused

AGP - USWC
32MB

PCI recognized Memory
Mapped Aperture

(USWC 8KB [may grow])

REG_BASE (PCIConf ig)

CONFIG_REG_APER_SIZE
(io reg)

Unused-Reserved

PCI recognized Memory
Mapped Aperture

(UC 8KB [may grow])

CONFIG_REG_1_BASE
[offset](io reg)

Memory Mapped Regs
8KB UC

(may change in
 future chips)

Unused

PCI System Memory
Image Expansion Area
UNUSED BY DRIVER

PCI System Memory Image
UNUSED BY DRIVERS

Unused Frame Buffer Area

Frame Buffer
(May include embedded)

Unused

PCI System Memory
Image Expansion Area
UNUSED BY DRIVER

PCI (scatter gather)
System Memory Image
UNUSED BY DRIVERS

Unused Frame Buffer Area

Frame Buffer
(May include embedded)

L
in

e
a

r
A

p
e

rt
u

re
 1

L
in

e
a

r
A

p
e

rt
u

re
 0

CONFIG_APER_0_BASE
(io reg)

PCI NonAGP Memory Architecture --- S/W Layout

P
a

g
e

 A
d

d
re

sse
s in

 ta
b

le

Figure 2-7. PCI Non-AGP Memory Architecture - Software Layouts
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
2-26 Proprietary and Confidential

Display Mode and Mode Switching

ory.
E 128

n in

creen
and

 (i.e.
2.7 Display Mode and Mode Switching
A display mode, also referred to as video mode, defines the following parameters:

• The type of display content.

• The screen resolution.

• The color depth of the pixels.

This implies that setting up a display mode is dependent on the available video mem
Once an operating mode is determined, a display mode must also be set for the RAG
according to the RAGE 128’s capability and the available memory resource.

The RAGE 128 supports the following display modes in the VGA operating mode:

• VGA-alphanumeric mode (also known as the text mode)
The text mode may further be classified into a number of sub-modes with variatio
the size of character and in the color of text.

• VGA-graphics mode
This mode can also be further divided into sub-modes according to the screen
resolution and the depth of color used to represent a pixel.

In the accelerator-operation mode, the RAGE 128 supports the graphics mode with s
resolutions (from 320x200 to 1600x1200 pixels), and with depths of color (8, 16, 24
32-bpp formats).

To switch from one display mode to another, call the BIOS service Set Display Mode
function AL = 1), and/or Coprocessor CRTC Parameters (i.e. function AL = 0).
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 2-27

Engine Discipline

wing

128
rs:

r is

k if
o it.
2.8 Engine Discipline
In the accelerator-operation mode, the RAGE 128’s GUI engine may use the PIO dra
mode or the CCE drawing mode.

If switching between these two operation modes is not handled properly, the RAGE
may hang (i.e. stop operating). To avoid hanging the RAGE 128, follow these pointe

• To safely switch from one mode to another, make sure the Command FIFO buffe
empty and it is in the idle state. This requires the program to check that the 31st bit of
register GUI_STAT is set to zero.

• When the RAGE 128 operates in the PIO drawing mode, the program must chec
there are sufficient entries in the Command FIFO buffer before writing any data t
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
2-28 Proprietary and Confidential

BIOS Services

2.9 BIOS Services
A number of BIOS services are available. These services help to avoid problems of
incorrectly setting up the RAGE 128 or configuring the display mode of the system.

For details about BIOS Services, see the Appendix for the “BIOS Function Calls”, on page
A-1.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 2-29

BIOS Services
This page intentionally left blank.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
2-30 Proprietary and Confidential

he
ace,

e
de,

.
Chapter 3
Accelerator Operation Mode

3.1 Scope
This chapter contains information about setting up the RAGE 128 for
accelerator-operation mode. The intended audience for this information is X-type OS
driver developers.

This chapter shows how to detect the RAGE 128 without using the BIOS functions. T
majority of the necessary information can be retrieved from the PCI Configuration Sp
which is set at POST.

The following information can be retrieved through the PCI Configuration Space:

• PCI Vendor ID

• Device ID

• Revision ID

• BIOS segment

• Base address of the register

• Memory and I/O apertures

For host applications to access the registers and memories through the apertures, th
initialization program needs to configure the RAGE 128 for accelerator-operation mo
and convert the aperture addresses from physical space to linear space.

The initialization stage consists of the following four major steps:

• Step 1: Detecting the RAGE 128.

• Step 2: Obtaining the configuration information about the physical and linear (i.e
virtual) addresses of apertures.

• Step 3: Setting up a display mode.

• Step 4: Initializing the GUI engine.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 3-1

Step 1: Detect the RAGE 128

oses

 and

ce. If

er
ins

D.
3.2 Step 1: Detect the RAGE 128
This step determines the following:

• The presence of a RAGE 128 within the system

• The various aperture addresses (memory, register, and I/O).

To determine much of this information, use the PCI configuration space. For the purp
of this document, the following lists several assumptions:

• The system uses the PCI host bus (since the RAGE 128 is only available in PCI
AGP bus types).

• The OS being used provides an interface for querying the PCI configuration spa
this is not the case, the programmer must gain access to this information.

3.2.1 Using the PCI Configuration Space

To use the PCI configuration space, follow these steps:

1. Detect if a device is installed that contains the ATI PCI Vendor ID (0x1002). As p
the PCI specification, offset’0’ of the configuration space for a given device conta
the PCI Vendor ID.

2. After identifying a device that has the ATI PCI Vendor ID, determine the Device I

3. Check to if the device ID matches the list of known RAGE 128 device IDs. The
current list of RAGE 128 device IDs are as follows:

4. Note that the Device ID is located at offset 0x02 of the configuration space.

Table 3-1 RAGE 128 Device IDs

Package ID Device ID Description

RE 0x5245 312pin, PCI 33 only

RF 0x5246 312pin, AGP 1X & 2X

RK 0x524B 256pin, PCI 33 only

RL 0x524C 256pin, AGP 1X & 2X
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
3-2 Proprietary and Confidential

Step 1: Detect the RAGE 128

ere

 way
st a

s to

I

nt.

write
5. After obtaining the value of the Device ID, compare it against the above list. If th
is a match, we can continue. Otherwise, we have two options:

• Return an error, indicating that a RAGE 128 device was not found
-OR-

• Scan the BIOS segment to see if the ‘R128’ signature string is found (note: a
to detect a RAGE 128 revision that may not be in the list). This protects again
driver not detecting new or revised RAGE 128s. However, this also has the
potential for problems in that the new revision may require some modification
the driver to work properly. This point should be considered before
implementation.

For the latest list of Device IDs for the RAGE 128, contact Developer Relations at AT
(www.atitech.com).

3.2.2 Scanning the BIOS Segment

By scanning the BIOS segment, the following information can be found:

• ROM ID
The ROM ID is defined as ‘AA55’ in the first two bytes of the BIOS segment.

• ATI product signature
 The ATI product signature is ‘761295520’.

• RAGE 128 string
The RAGE 128 string is ‘R128’.

For a successful installation of the RAGE 128, all three of these items must be prese
They should all be present within the first 512 bytes of the BIOS segment.

3.2.3 Scratch Register Test

To confirm the presence of a RAGE 128 board on the PCI bus, perform a read-and-
test on register BIOS_0_SCRATCH. Perform this test through the I/O port. Use the
following steps:

1. Read and save the contents of register BIOS_0_SCRATCH.

2. Write the value (e.g. 0x55555555) to BIOS_0_SCRATCH.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 3-3

Step 1: Detect the RAGE 128

3. Read back BIOS_0_SCRATCH. If the value is not the same as what was written, a
RAGE 128 is not present.

4. Repeat steps 2 and 3, using the compliment of the previous value (e.g.
0xAAAAAAAA).

5. Restore the saved value of BIOS_0_SCRATCH.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
3-4 Proprietary and Confidential

Step 2: Obtain the Configuration Information

tion

space
d be

et

).

then

ures,
.

3.3 Step 2: Obtain the Configuration Information
After locating the PCI configuration space for a RAGE 128, some additional configura
information can be retrieved, such as:

• Memory aperture base address (PCI configuration space offset 0x10).

• Register aperture base address (PCI configuration space offset 0x18).

• I/O base address (PCI configuration space offset 0x14).

• BIOS segment address (PCI configuration space offset 0x30).

The memory aperture base address value at offset 0x10 within the PCI configuration
is in bits [31:26] of its DWORD. Therefore, to isolate the proper bits, the value shoul
logically ANDed with 0xFC000000.

For the I/O base aperture, the actual value is within bits [31:8] of its DWORD (at offs
0x14). Therefore, to isolate the proper bits, the value should be logically ANDed with
0xFFFFFF00.

The register aperture base value resides in bits [31:14] of its DWORD (at offset 0x18
Therefore, to isolate the proper bits, the value should be logically ANDed with
0xFFFFC000.

The BIOS segment, at offset 0x30, is in the upper WORD of this value (bits [31:17]),
shifted right one bit.

After obtaining these physical memory addresses for the memory and register apert
convert them to virtual or linear addresses, so that the host application may use them

Example Code: Converting the physical addresses to a usable virtual address
DWORD phys_to_virt (DWORD physical, DWORD size)

{

 union REGS r;

 struct SREGS sr;

 DWORD retval=0;

 memset (&r, 0, sizeof (r));

 memset (&sr, 0, sizeof (sr));

 r.w.ax = 0x0800;

 r.w.bx = physical >> 16;

 r.w.cx = physical & 0xFFFF;

 r.w.si = size >> 16;

 r.w.di = size & 0xFFFF;
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 3-5

Step 2: Obtain the Configuration Information

ter is

:

d
 int386x (0x31, &r, &r, &sr);

 if ((r.w.cflag & INTR_CF) == 0)

 {

 retval = (long) (((long) r.w.bx << 16) | r.w.cx);

 } // if

 return (retval);

} // phys_to_virt

At this point, you have successfully detected that a RAGE 128-based graphics adap
installed.

The following lists the configuration information about the adapter has been revealed

• ASIC version (Device ID)

• BIOS segment

• Memory aperture address (both physical and virtual)

• Register aperture address (both physical and virtual)

• I/O base address

This gives sufficient information to begin the next step: setting up a display mode, an
initializing the graphics engine (GUI).
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
3-6 Proprietary and Confidential

Step 3: Set a Display Mode

f the

rs.
eter

o
 X
s

ode,

IOS
3.4 Step 3: Set a Display Mode
This section covers how to set a display mode. To select a display mode, use one o
following methods:

• Use the BIOS function (i.e. the easy method).

• Manually set up the display mode (i.e. the hard method).

Easy Method
To set the display mode using an easy method, use the BIOS function 0x00. Supply
parameters for the mode number and the color depth in the appropriate CPU registe
Then, call the function. A variant of this method also allows you to pass a CRT param
table to supply custom CRT values, even custom resolutions.

Difficult Method
To set the display mode using a hard method, manually program the PLL and CRT t
achieve the desired mode. Typically, protected-mode operating systems (i.e. usually
type OSs) must use this method (since they are unable to execute the BIOS function
within their OS). If the programmer has any possibility of using the BIOS to set the m
this would be much preferred.

3.4.1 Using the BIOS Function

The RAGE 128 can be set up in a particular display mode by calling the extended B
function 00h, Set Display Mode. Here are the inputs required for this function:

Table 3-2 Inputs for the Set Display Mode BIOS Function

Code Purpose

di
Display Device Mask.
This determines what display will be affected by this call. Default is ‘0’, which
affects all displays.

cl[0:3] Color depth.

ch Resolution.

dx:bx Pointer to parameter table (if we choose to set the mode from a parameter table).
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 3-7

Step 3: Set a Display Mode

he
. To
X:BX

 the
If you choose to use the BIOS installed modes, leave the simple set-register CH to t
appropriate resolution. For the appropriate values, refer to the Video BIOS appendix
pass a CRT parameter table, set CH = 0x81 and point to the parameter table using D
(this is covered in the next section).

The BIOS functions can be called in two different manners. A far call to offset 0x64 of
BIOS Segment can be used, and the DOS interrupt 0x10 with AH = 0x10 is also
supported. The following code uses the latter.

Example Code: Setting the Mode
BYTE R128_SetMode (BYTE xres, BYTE yres, BYTE bpp)

{

 union REGS r;

 memset (&r, 0, sizeof (r));

 r.w.ax = 0xA000; // Function 00h: Set Mode.

 r.w.ch = 0x00;// Set initially to 0, will be filled in.

 // Determine requested resolution mode number.

 if ((xres == 320) || (xres == 640))

 {

 switch (yres)

 {

 case 200: r.h.ch = 0xE2;

 break;

 case 240: r.h.ch = 0xE3;

 break;

case 350:r.h.ch = 0xE6;

break;

case 400:r.h.ch = 0xE1;

break;

case 480:r.h.ch = 0x12;

break;

 default: break;

 }

 }

 else

 {

 switch (xres)

 {

 case 512: r.h.ch = 0xE4;

 break;

 case 800: r.h.ch = 0x6A;

 break;

 case 1024: r.h.ch = 0x55;

 break;

 case 1280: r.h.ch = 0x83;
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
3-8 Proprietary and Confidential

Step 3: Set a Display Mode
 break;

 case 1600: r.h.ch = 0x84;

 break;

 default: printf ("\nUnsupported resolution!\n");

 return (0);

 break;

 }

 } // if/else

 // if r.h.ch is still 0, an invalid xres or yres was passed.

 // we must return a failure

 if (r.h.ch == 0)

 {

 printf ("\nUnsupported Resolution!\n");

 return (0);

 }

 // Determine requested pixel depth

 switch (bpp)

 {

 case 8: r.h.cl = 0x02;

 break;

 case 15: r.h.cl = 0x03;

 break;

 case 16: r.h.cl = 0x04;

 break;

 case 24: r.h.cl = 0x05;

 break;

 case 32: r.h.cl = 0x06;

 break;

 default: printf ("\nUnsupported pixel depth!\n");

 return (0);

 break;

 } // switch

 // fill in the appropriate values for the global structure.

 R128_AdapterInfo.xres = xres;

 R128_AdapterInfo.yres = yres;

 R128_AdapterInfo.pitch = xres/8; // we'll set pitch = xres/8 by
default.

 R128_AdapterInfo.bpp = bpp;

 // Call the BIOS to set the mode.

 int386 (0x10, &r, &r);

 if (r.h.ah)

 {

 return (0); // Error setting mode.

 }

 else
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 3-9

Step 3: Set a Display Mode

 for

ing a
nd
eter
 {

 return (1);

 } // if

} // R128_SetMode

3.4.2 Passing a CRT Parameter Table to Set a Display Mode

While using the BIOS to set a display mode is straight forward, it does have some
limitations. The only modes that can be set are:

• Those that are directly supported by the BIOS.

• Those whose refresh rate that is supported by the BIOS, which is typically 60 Hz
most modes.

In cases where a custom mode or refresh rate is required, the BIOS allows for pass
CRT parameter table, from which the BIOS will derive the appropriate CRT values, a
program the CRT accordingly. For a full description of the structure of the CRT Param
table, refer to the Video BIOS appendix.

Example Code: Setting the display mode
BYTE R128_SetDisplayModeFromTable (CRTParameterTable table)

{

 union REGS r;

 DWORD psize, segment, selector;

 char *data;

 int x, y;

 // We need to allocate some memory for the mode table, so we can

 // pass the BIOS a real mode address.

 psize = 2; // require 28 bytes of memory.

 if (DPMI_allocdosmem(psize, &segment, &selector) == 0)

 {

 /* can't allocate memory for mode table, shut down */

 R128_ShutDown ();

 printf ("\nUnable to allocate system memory for mode table!");

 exit (1);

 }

 memset (&r, 0, sizeof (r));

 r.w.ax = 0xA000; // Function 00h: Set Mode.

 r.w.di = 0x0000; // Set CRT only

 // Set DX equal to the segment that was allocated.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
3-10 Proprietary and Confidential

Step 3: Set a Display Mode

ually

ed so

e
 // The offset (BX) will be 0.

 r.w.dx = segment;

 r.w.bx = 0;

 data = (char *)(segment << 4);

 // Copy the CRT Parameter Table data to the location pointed

 // to by DX:BX

 memcpy (data, &table, sizeof(CRTParameterTable));

 // Set BIOS to load resolution from specified table and set depth

 // to the requested pixel depth.

 r.w.cx = 0x8100 | R128_GetBPPValue (R128_AdapterInfo.bpp);

 // Call the BIOS to set the mode.

 int386 (0x10, &r, &r);

 if (r.h.ah)

 {

 // We have encountered an error setting the display mode.

 return (0);

 }

 else

 {

 // Success!

 return (1);

 }

} // R128_SetDisplayModeFromTable ()...

3.4.3 Manually Setting a Display Mode

In cases where the video BIOS cannot be executed, the display mode must be man
programmed. This includes calculating the required CRTC and PLL values, and
programming the appropriate registers.

Programming the CRTC Registers
To set up the RAGE 128 for a display mode, the CRTC registers must be programm
that they correspond with the requested display mode dimensions.

• While programming the CRTC registers, it is strongly recommended to disable th
display. This can be accomplished by setting the following bits in register
CRTC_EXT_CNTL:

• CRTC_HSYNC_DIS

• CRTC_VSYNC_DIS

• CRTC_DISPLAY_DIS
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 3-11

Step 3: Set a Display Mode

After setting the display mode, enable the display.

First, start by clearing some “common” registers that, if active, may interfere with the
CRTC settings. These registers are:

• OVR_CLR - disable the overscan color.

• OVR_WID_LEFT_RIGHT - no overscan border.

• OVR_WID_TOP_BOTTOM - no overscan border.

• OV0_SCALE_CNTL - disable the overlay.

• MPP_TB_CONFIG - disable MPP usage for TV out.

• MPP_GP_CONFIG -disable general purpose MPP.

• SUBPIC_CNTL - disable subpicture decoding (for MPEG/DVD).

• VIPH_CONTROL - disable VIP transfers.

• I2C_CNTL_1 - disable the I2C bus.

• GEN_INT_CNTL - disable interrupts.

• CAP0_TRIG_CNTL - disable capture buffer 0.

• CAP1_TRIG_CNTL - disable capture buffer 1.

The next step is to program the following CRTC related registers:

• CRTC_GEN_CNTL - this register is used to:

• Enable the extended display mode (accelerator).

• Enable the CRTC.

• Disable the cursor.

• Set the pixel width (i.e. the color depth).

• Disable composite sync.

• CRTC_EXT_CNTL

• Perform a READ-MODIFY-WRITE to preserve some power-up settings:

• CRTC_HSYNC_DIS

• CRTC_VSYNC_DIS

• CTRC_DISPLAY_DIS
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
3-12 Proprietary and Confidential

Step 3: Set a Display Mode

lue

l

d to

s

y
op.
• In addition, enable VGA_ATI_LINEAR, and VGA_XCRT_CNT_EN.

• DAC_CNTL

• Perform a READ-MODIFY-WRITE to preserve the lower 3 bits (and 0x7).

• Set DAC_8BIT_EN, disable DAC_TVO_EN and DAC_VGA_ADR_EN.

• Set the DAC_MASK to 0xFF (enable all palette index bits).

• CRTC_H_TOTAL_DISP - set following two fields in this register:

• CRTC_H_DISP contains the amount of visible horizontal ‘characters’. This
value is determined by taking the visible pixels (x-resolution), dividing by 8 (8
pixels = 1 ‘character’), then subtracting 1. This field occupies bits [0:8] of this
register.

• CRTC_H_TOTAL contains the total horizontal ‘characters’, which includes
overscan right, front porch, sync width, back porch and overscan left. The va
for this field is expressed in ‘characters’ as well, then subtract 1.
CRTC_H_TOTAL resides in bits [16:23] of CRTC_H_TOTAL_DISP.

• CRTC_H_SYNC_STRT_WID - t he starting horizontal position and width, as wel
as the sync polarity are written to this register:

• Bits [0:2] of CRTC_H_SYNC_STRT_PIX allows for pixel accurate starting
positioning by delaying the start (in pixels) within the character value of bits
[3:11] contained in CRTC_H_SYNC_STRT_CHAR.

• The horizontal sync start is typically part of the parameter table that is passe
the mode setting routine.

• Bits [16:21] of CRTC_H_SYNC_WID is calculated by taking the horizontal sync
end subtracted by the horizontal sync start, then converting that to character
(divide by 8).

• Bit [23] of CRTC_H_SYNC_POL is ‘0’ for positive sync, and ‘1’ for negative
sync.

• CRTC_V_TOTAL_DISP - set following two fields in this register:

• Bits [16:26] of CRTC_V_DISP determines the amount of visible lines (not
including overscan).

• Bits [0:10] of CRTC_V_TOTAL is the vertical line total. This includes the displa
height, overscan bottom, front porch, sync width, back porch and overscan t
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 3-13

Step 3: Set a Display Mode

lue.

is

the
ce

in

ter.

 for the
• CRTC_V_SYNC_STRT_WID - set the following three fields for this register:

• Bits [0:10] of CRTC_V_SYNC_STRT is the sum of display height, overscan
bottom and front porch.

• CRTC_V_SYNC_WID is the vertical sync width. This is typically dependent on
the monitor. However, most modern monitors have a fair tolerance for this va

• CRTC_V_SYNC_POL is the polarity of the vertical sync. ‘0’ is positive, and ‘1’
is negative.

• CRTC_OFFSET
This register determines the start of displayable video memory. In most cases, th
will be set to ‘0’. To set up some kind of virtual desktop, a non-zero value may be
appropriate for this value.

• CRTC_OFFSET_CNTL
Clear this register. There are various functions related to the CRTC_OFFSET that can
be enabled in this register. For the purposes of setting a display mode, initialize
value (i.e. set it to ‘0’). For more details, refer to the RAGE 128 Register Referen
manual.

• CRTC_PITCH
The display pitch is set in this register. Bits [0:9] hold the pitch value, expressed
pixels*8 (characters). For 24-bpp format modes, the CRTC uses pixels*8 for the
pitch, but the rendering engine uses bytes*8 for the pitch.

3.4.4 Calculating the PLL Register Values

To manually set a display mode, first determine the following parameters:

• Dot-clock reference frequency.

• Dot-clock reference divider.

• Minimum and maximum PLL output values for the dot clock for the installed adap

These values are used for reference to obtain the necessary CRT timing parameters
requested display mode.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
3-14 Proprietary and Confidential

Step 3: Set a Display Mode

lues

z
the

S

n

k

ffset
A RAGE 128-based graphics adapter may use one of several base or reference
frequencies, depending on the features supported by the installed card. Common va
for the reference frequencies are:

• 29.50 MHz

• 28.63 MHz

• 14.32 MHz

The RAGE 128’s BIOS uses these values expressed in kHz/10. Therefore, 29.50 MH
would actually be 2950. To reliably determine this frequency, extract the value from
BIOS by looking at the appropriate tables within the BIOS.

• The BIOS header is located at offset 0x48 from the BIOS segment address.

• The PLL information block pointer is located at offset 0x30 to 0x31 within the BIO
header.

BIOS Header Pointer = BIOS segment address + 0x48

PLL Information Block Pointer = BIOS header pointer + 0x30

The dot clock reference frequency is located at offset 0x0E within the PLL informatio
block.

Dot Clock Reference Frequency = PLL Information Block + 0x0E

The dot clock reference frequency is located offset 0x0E (word) within the PLL
information block. Use the reference frequency to determine what post and feedbac
divider values will be required to provide the proper dot clock frequency for a given
display mode.

The value of the reference feedback divider is also required. This value is found at o
0x10 (word) within the PLL information block.

Dot Clock Reference Divider = PLL Information Block + 0x10
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 3-15

Step 3: Set a Display Mode

e
ust

rd).

in

thin

MHz.

 The
ncy

uency
Obtain the minimum and maximum output frequencies for the PLL.

Make sure that the desired output frequency can be provided given these values. Th
maximum post-divider value is 12, so the desired output frequency multiplied by 12 m
be equal to or greater than the minimum PLL output frequency.

Also, the desired output frequency cannot be greater than the maximum PLL output
frequency. The minimum dot clock PLL output frequency is located offset 0x18 (dwo

Dot Clock Minimum PLL Output Frequency = PLL Information Block + 0x12

The maximum dot clock PLL output frequency is located at offset 0x16 (dword) with
the PLL information block.

Dot Clock Maximum PLL Output Frequency = PLL Information Block + 0x16

Regarding the output frequencies, two different output frequencies are discussed wi
this section. The Requested Output Frequency is the dot clock frequency for a given
display mode.

For example, for a 640x480, 60 Hz refresh, the requested output frequency is 25.18

 The PLL Output Frequency is the frequency that the PLL will output, which is then
divided down by the feedback divider. It is important to distinguish these two output
frequencies. They are not the same and in the majority of cases, they are not equal.
Requested Output Frequency (dot clock) is in fact a result of the PLL Output Freque
divided down by the feedback divider.

3.4.5 Determining the Post and Feedback Dividers

The internal clock generator uses a PLL feedback system to produce the desired freq
output according to the following equation:

Dot Clock Frequency =
(Reference Frequency * Feedback Divider) / (Reference Divider * Post Divider)
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
3-16 Proprietary and Confidential

Step 3: Set a Display Mode

e one

e of
um

n to

ncy
The Feedback Divider must be from 128 to 255 inclusive, and the Post Divider can b
of 1, 2, 3, 4, 6, 8, or 12.

To easily determine the post divider, multiply the required dot clock frequency by on
the possible post divider values (i.e. 1, 2, 3, 4, 6, 8, 12) until it falls between the minim
and maximum PLL output frequencies. Therefore:

PLL Output Frequency = Post Divider * Dot Clock Frequency

After calculating the post divider and PLL output frequency, use the following equatio
determine the feedback divider:

Feedback Divider =
Post Divider * Reference Divider*PLL Output Frequency) / (Reference Frequency)

At this point, all the required values to program the PLL to obtain the dot clock freque
required for a given display mode are known.

Example Code: Finding the post and feedback divider for a given dot clock
frequency

void R128_PLLGetDividers (WORD Frequency)

//

// DESCRIPTION:

// Generates post and feedback dividers for desired pixel clock frequency.

//

// PARAMETERS:

// Frequency Desired frequency in units of 10 kHz.

//

{

DWORD FeedbackDivider; // Feedback divider value

DWORD OutputFrequency; // Desired output frequency

BYTE PostDivider = 0; // Post Divider for Pixel Clock

//

// The internal clock generator uses a PLL feedback system to

// produce the desired frequency output according to the following

// equation:

//

// Output Frequency = (Reference Frequency * Feedback Divider) /

// (Reference Divider * Post Divider)

//
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 3-17

Step 3: Set a Display Mode
// Where Reference Frequency is the reference crystal frequency,

// FeedbackDivider is the feedback divider (from 128 to 255 inclusive),

// and Reference Divider is the reference frequency divider.

// Post Divider is the post-divider value (1, 2, 3, 4, 6, 8, or 12).

//

// The required feedback divider can be calculated as:

//

// Feedback Divider = (Post Divider * Reference Divider *

// Output Frequency) / Reference Frequency

//

// Make sure that the requested dot clock frequency does not exceed

// the maximum possible output frequency.

if (Frequency > PLL_INFO.max_freq)

{

Frequency = (WORD)PLL_INFO.max_freq;

}

// Make sure that the requested dot clock frequency is not less than

// the lowest possible output frequency.

if (Frequency * 12 < PLL_INFO.min_freq)

{

Frequency = (WORD)PLL_INFO.min_freq / 12;

}

OutputFrequency = 1 * Frequency;

if ((OutputFrequency >= PLL_INFO.min_freq) &&

(OutputFrequency <= PLL_INFO.max_freq))

{

PostDivider = 1;

goto _PLLGetDividers_OK;

}

OutputFrequency = 2 * Frequency;

if ((OutputFrequency >= PLL_INFO.min_freq) &&

(OutputFrequency <= PLL_INFO.max_freq))

{

PostDivider = 2;

goto _PLLGetDividers_OK;

}

OutputFrequency = 3 * Frequency;

if ((OutputFrequency >= PLL_INFO.min_freq) &&

(OutputFrequency <= PLL_INFO.max_freq))

{

PostDivider = 3;
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
3-18 Proprietary and Confidential

Step 3: Set a Display Mode
goto _PLLGetDividers_OK;

}

OutputFrequency = 4 * Frequency;

if ((OutputFrequency >= PLL_INFO.min_freq) &&

(OutputFrequency <= PLL_INFO.max_freq))

{

PostDivider = 4;

goto _PLLGetDividers_OK;

}

OutputFrequency = 6 * Frequency;

if ((OutputFrequency >= PLL_INFO.min_freq) &&

(OutputFrequency <= PLL_INFO.max_freq))

{

PostDivider = 6;

goto _PLLGetDividers_OK;

}

OutputFrequency = 8 * Frequency;

if ((OutputFrequency >= PLL_INFO.min_freq) &&

(OutputFrequency <= PLL_INFO.max_freq))

{

PostDivider = 8;

goto _PLLGetDividers_OK;

}

OutputFrequency = 12 * Frequency;

PostDivider = 12;

_PLLGetDividers_OK:

//

// OutputFrequency now contains a value which the PLL is capable of

// generating.

// Find the feedback divider needed to produce this frequency.

//

FeedbackDivider = RoundDiv (PLL_INFO.ref_div * OutputFrequency,

 PLL_INFO.ref_freq);

PLL_INFO.fb_div = (WORD)FeedbackDivider;

PLL_INFO.post_div = (BYTE)PostDivider;
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 3-19

Step 3: Set a Display Mode

lock

ial
ers
isplay

IFO
return;

} // R128_PLLGetDividers()

We now have the necessary values to program the PLL to set the necessary pixel c
frequency. The dot clock uses PLL 3 on the RAGE 128. See the source code file
“r128pll.c” for the steps required to program the actual PLL registers.

3.4.6 Programming the DDA

To determine how to access the display FIFO, the RAGE 128 uses a digital different
analyzer (DDA). In order for the display to work properly, program the two DDA regist
with the proper values so that the display FIFO behaves properly and the resulting d
is correct.

The affected registers are:

• DDA_CONFIG

• DDA_ON_OFF

Calculate the following values:

• Number of memory clock cycles (XCLKS) per transfer to the display FIFO: x

• Minimum number of bits required to hold the integer portion of x: b

• Useable precision: (b + 1) = p

• Display FIFO off point: roff

• Display FIFO on point: ron

• Loop latency factor for the hardware: rloop

To calculate these values, use the following series of equations. First, determine the
amount of memory clock cycles that are used in a transfer to the display FIFO.

x =
{Memory Clock (MHz) / Pixel Clock (MHz) } * {Display FIFO Width/Bits per Pixel}

Where x is equal to the number of memory clocks in a transfer. This is the display F
width (in bits) for the RAGE 128 (for all display modes).
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
3-20 Proprietary and Confidential

Step 3: Set a Display Mode

s
ble

FIFO

AGE

n
Calculate the minimum number of bits required to hold the integer portion of x (i.e.
calculate b). This value is easily found by shifting the x to the right until x = ‘0’. At thi
point, the number of shifts would represent the number of bits (b) required. The usea
precision (p) is equal to the minimum number of bits previously calculated plus 1
(i.e. p = b + 1).

Use the following equation to calculate the display FIFO off point:

roff = x * (d – 4)

In the above equation, d is equal to the number of transfers (octwords) for a display
entry. For extended accelerator modes, d = 32. For VGA modes, d = 64.

Calculating the display FIFO on point requires information about the type of memory
installed on the adapter. The table below shows the currently used memories on the R
128, with the necessary specification values required to calculate the display FIFO o
setting. All the values in the table are expressed in memory clock cycles (XCLKS).

Table 3-3 Memory Specifications

128 bit SDR 1:1 64 bit SDR 1:1 64 bit SDR 2:1 64 bit DDR

Memory Read Latency (ML) 4 4 4 4

Maximum Burst Length (MB) 4 8 4 4

RAS to CAS delay (trcd) 3 3 1 3

RAS precharge (trp) 3 3 2 3

write recovery (twr) 1 1 1 2

CAS Latency (CL) 3 3 2 3

read to write delay (tr2w) 1 1 1 1

Loop Latency 16 17 16 16

DSP_ON 26 38 20 27

Note: All values expressed in XCLKS.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 3-21

Step 3: Set a Display Mode

ing a

int

 is
Use the following equation to calculate the display FIFO on point:

ron = 4 * MB + 3 * MAX(t rcd – 2, 0) + 2 * trp + twr + CL + tr2w + x

For memory types that might be used in the future, the values in the table above are
constant. In addition, they can be retrieved from the following registers (if you are us
platform that has a video BIOS):

• ML = MEM_LATENCY

• MB = 8 for 64 bit SDR 1:1, 4 otherwise

• trcd = 1 for SDR 2:1, MEM_TRCD otherwise

• trp = 2 for SDR 2:1, MEM_TRP otherwise

• twr = MEM_TWR

• CL = 2 for SDR 2:1, CAS_LATENCY otherwise

• tr2w = MEM_TR2W

Be aware of a loop latency factor, which is incurred in the hardware. Ensure that the
display FIFO on point plus the loop latency factor is less than the display FIFO off po
(otherwise the display mode is not guaranteed to work).

Use the following equation to calculate the loop latency factor:

r loop = 12 + ML

However, for 64 bit SDR 1:1, use the following equation:

r loop = 12 + ML + 1

Therefore, to guarantee an operational mode, make sure that the following equation
true:

ron + rloop < roff
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
3-22 Proprietary and Confidential

Step 3: Set a Display Mode
The values written to the DDA registers are as follows:

• DDA_ON = ron * 2 11–p

• DDA_OFF = roff * 2 11-p

• DDA_PRECISION = p

• DDA_XCLKS_PER_XFER = x * 2 11-p

• DDA_LOOP_LATENCY = rloop

Program the registers as follows:

• DDA_CONFIG = DDA_XCLKS_PER_XFER | (DDA_PRECISION << 16) |
(DDA_LOOP_LATENCY << 20)

• DDA_ON_OFF = DDA_OFF | (DDA_ON << 16)
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 3-23

Step 4: Initialize the GUI Engine

the
n

rture

els.

lues

to
ed as

areful

3.5 Step 4: Initialize the GUI Engine
After setting a display mode, this step involves using the acceleration capabilities of
RAGE 128 to initialize the GUI engine. This consists of setting up the GUI to a know
drawing context. To initialize the GUI engine, follow these steps:

1. Set the destination, source and default offset registers to equal the memory ape
address.

2. Program the engine pitch registers

3. Observe the following characteristics of the engine pitch:

• It must be divisible by eight.

• The value written to the pitch registers is expressed in bytes per line, not pix

• In 24-bpp format modes, the engine pitch values must be multiplied by 3.

4. Program the source, destination and default pitch registers to the appropriate va
for the current display mode.

5. To enable a drawing area on the visible screen, program the scissors registers.

• Generally, when initially configuring the GUI, program the scissors registers
the maximum values allowable, so that any part of display memory can be us
a source, and also to allow drawing anywhere in memory if needed.

• The scissors can be set to the screen co-ordinates if required, however be c
when using off screen memory to store bitmaps and other data. The source
scissors registers must be set to the appropriate dimensions in this case.

The RAGE 128 contains the register DP_GUI_MASTER_CNTL, which can be used to set
up the majority of the default drawing context registers in a single register write. A
breakdown of the register and it’s various fields follow:

Table 3-4 DP_GUI_MASTER_CNTL

Field Name Purpose

GMC_SRC_PITCH_OFFSET_CNTL

This field allows setting the SRC_OFFSET =
DEFAULT_OFFSET and SRC_PITCH = DEFAULT_PITCH
(0)
-OR-
leave alone (1).
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
3-24 Proprietary and Confidential

Step 4: Initialize the GUI Engine
GMC_DST_PITCH_OFFSET_CNTL
Same functionality as previous field, only relating to the
destination pitch and offset values.

GMC_SRC_CLIPPING
Determines whether the source scissor registers will equal
the default scissor registers, or will not use the default
value.

GMC_DST_CLIPPING
Same functionality as previous field, only relating to the
destination scissor register default values.

GMC_BRUSH_DATATYPE

Determines what brush type will be used for drawing
operations. Typically, a solid color brush would be used.
Consult the register reference for the possible values for
this field.

GMC_DST_DATATYPE

This field represents the destination pixel depth/format.
Pixel depths of 8 to 32 are supported, as well as various
YUV formats. Generally, the value for this field will equal the
display-mode pixel depth. Consult the register reference for
the complete list of available values.

GMC_SRC_DATATYPE

The source expansion value is initialized here. Values are:
0 = monochrome (source is expanded to foreground and

background).
1 = for source expanded to foreground, and the background

is left alone.
2 = color of the pixel is used (the pixel type is the same as

the destination).

GMC_BYTE_PIX_ORDER
Allows for pixel ordering with respect to most significant
byte (MSB) and least significant byte (LSB).
Default = 0 (MSB->LSB).

GMC_CONVERSION_TEMP
The default color conversion temperature is set here. This
deals with color space conversions when using the front or
back end scalars.

GMC_ROP3
The default raster operation is set here. The RAGE 128
supports all 256 ROPs as per the MS Win3.1 DDK. See
appendix D regarding available ROP values.

DP_SRC_SOURCE
Determines the pixel source for source data. Possible
sources are display memory and the host data registers.

GMC_3D_FCN_EN
Allows the clearing of the SCALE_3D_FCN register, which
is required when initially setting up the drawing engine.

Table 3-4 DP_GUI_MASTER_CNTL (Continued)

Field Name Purpose
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 3-25

Step 4: Initialize the GUI Engine

ing

d
6. Initialize (i.e. clear out) the following additional registers (specifically the line
drawing registers):

• DST_BRES_ERR

• DST_BRES_INC

• DST_BRES_DEC

7. Set the desired default color values for both brush and source data, in the follow
registers:

• DP_BRUSH_FRGD_CLR

• DP_BRUSH_BKGD_CLR

• DP_SRC_FRGD_CLR

• DP_SRC_FRGD_CLR

Typically, the foreground color would be white (i.e. 0xFFFFFFFF) and the backgroun
color would be black (i.e. 0x00000000).

Example Code: Initializing the GUI engine
void R128_InitEngine (void)

{

DWORD temp, bppvalue;

// determine engine pitch

temp = R128_AdapterInfo.pitch;

if (R128_AdapterInfo.bpp == 24)

{

temp = temp * 3;

}

// setup engine offset registers

GMC_CLR_CMP_CNTL_DIS Enables or disables the color compare function.

GMC_AUX_CLIP_DIS Enables or disables the auxiliary scissor registers.

GMC_WR_MSK_DIS Enables or disables the write mask.

Table 3-4 DP_GUI_MASTER_CNTL (Continued)

Field Name Purpose
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
3-26 Proprietary and Confidential

Step 4: Initialize the GUI Engine
R128_WaitForFifo (4);

regw (DEFAULT_OFFSET, 0x00000000);

// setup engine pitch registers

regw (DEFAULT_PITCH, temp);

// set the default scissor registers to maximum dimensions

regw (DEFAULT_SC_TOP_LEFT, 0x00000000);

regw (DEFAULT_SC_BOTTOM_RIGHT, (0x1FFF << 16) | 0x1FFF);

// Set the drawing controls registers.

R128_WaitForFifo (1);

bppvalue = R128_GetBPPValue (R128_AdapterInfo.bpp);

regw (DP_GUI_MASTER_CNTL, GMC_SRC_PITCH_OFFSET_DEFAULT |

GMC_DST_PITCH_OFFSET_DEFAULT |

GMC_SRC_CLIP_DEFAULT |

GMC_DST_CLIP_DEFAULT |

GMC_BRUSH_SOLIDCOLOR |

(bppvalue << 8) |

GMC_SRC_DSTCOLOR |

GMC_BYTE_ORDER_MSB_TO_LSB |

GMC_CONVERSION_TEMP_6500 |

ROP3_SRCCOPY |

GMC_DP_SRC_RECT |

GMC_3D_FCN_EN_CLR |

GMC_DST_CLR_CMP_FCN_CLR |

GMC_AUX_CLIP_CLEAR |

GMC_WRITE_MASK_SET);

R128_WaitForFifo (7);

// Clear the line drawing registers

regw (DST_BRES_ERR, 0);

regw (DST_BRES_INC, 0);

regw (DST_BRES_DEC, 0);

// set brush color registers

regw (DP_BRUSH_FRGD_CLR, 0xFFFFFFFF);

regw (DP_BRUSH_BKGD_CLR, 0);

// set source color registers

regw (DP_SRC_FRGD_CLR, 0xFFFFFFFF);

regw (DP_SRC_BKGD_CLR, 0);

// Wait for engine idle before returning

R128_WaitForIdle ();

return;
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 3-27

Step 4: Initialize the GUI Engine
} // R128_InitEngine ()
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
3-28 Proprietary and Confidential

s.

Chapter 4
Programming

4.1 Scope
This chapter describes how to program the RAGE 128 to perform drawing operation
This chapter also discusses some aspects of programming the RAGE 128 using the
Programmed I/O (PIO) drawing mode. The following topics are covered:

• Engine command queue maintenance

• Engine Drawing Operations

• Rectangle Drawing

• Bit Block Transfers

• Line Drawing

• Pattern Drawing

• Compare Functionality

• Monochrome Expansion

• Handling the Hardware Cursor
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-1

rs

ries
,

f
e the
locked

ngine
4.2 Engine Command Queue Maintenance
The command queue buffers the “FIFOed” register writes and reads to the engine.
Generally, “FIFOed” registers are involved in the drawing operations. The file
REGDEF.H specifically outlines the registers are “FIFOed”, and identifies the registe
that can be read directly.

For the RAGE 128, the command queue consists of 64 DWORD entries. The
GUI_FIFOCNT@GUI_STAT register field represents how many command queue ent
are free at a given point in time. Before reading or writing a register that is “FIFOed”
check for the availability of a free queue entry. Once an entry is available, submit the
read/write operation to the queue.

The following code polls the GUI_STAT register to ensure that the requested amount o
FIFO entries are available. In addition, provisions are made for time-out errors, wher
engine cannot provide a free queue entry (e.g. this may occur when the engine has
up or hung to due improper programming).

Example Code: Waiting for the FIFO
void R128_WaitForFifo (DWORD entries)
{

WORD starttick, endtick;

starttick = *((WORD *) (DOS_TICK_ADDRESS));
endtick = starttick;
while ((regr (GUI_STAT) & 0x00000FFF) < entries)
{

endtick = *((WORD *) (DOS_TICK_ADDRESS));
if (abs (endtick - starttick) > FIFO_TIMEOUT)
{

gui_stat = regr (GUI_STAT);
R128_ResetEngine ();

} // if
} // while

return;

} // R128_WaitForFifo ()

In addition, some situations require the engine to become idle. For example, an idle e
is required in the following cases:

• Reading a status register.

• Getting a true status value.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-2

fies

ines by
n
en
In order to determine that the engine is idling, the following two conditions must be
satisfied:

• There must be 64 free command queue entries.

• The engine (GUI) must be inactive.

NOTE: An empty command queue DOES NOT imply an idle engine. Code that satis
these two conditions would do the following:

1. Poll (i.e. continually check) GUI_FIFOCNT@GUI_STAT until its contents equal 64.

2. Then, poll GUI_FIFOCNT@GUI_STAT until its contents equal ‘0’.

Under some conditions, the GUI engine may become unstable or lock. If the engine
become unstable or locks, reset the engine. The code below handles locked up eng
checking for a time-out condition. The code calls the appropriate function to handle a
engine time-out, thus allowing the program to continue to run after the engine has be
reset.

Example Code: Waiting for idle
void R128_WaitForIdle (void)
{

WORD starttick, endtick;

// Insure FIFO is empty before waiting for engine idle.
R128_WaitForFifo (64);

// Poll GUI_ACTIVE to wait for engine idle
// Set the appropriate timeout values.
starttick = *((WORD *) (DOS_TICK_ADDRESS));
endtick = starttick;
while ((regr (GUI_STAT) & GUI_ACTIVE) != ENGINE_IDLE)
{

endtick = *((WORD *) (DOS_TICK_ADDRESS));
if (abs (endtick - starttick) > IDLE_TIMEOUT)
{

gui_stat = regr (GUI_STAT);
R128_ResetEngine ();

} // if
} // while

// flush the pixel cache to ensure that all pending writes
// to the frame buffer are complete.
R128_FlushPixelCache ();

return;

} // R128_WaitForIdle ()
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-3

sed,

that
4.3 Programmed I/O Drawing Operations
This section describes how to draw rectangles and lines.

• Methods for drawing rectangles:

• Bit Block Transfer

• BitBlt - Bit Block Transfer

• Transparent BitBlt (Bit Block) Transfer

• Scaled Block Transfer

• Methods for drawing lines:

• Drawing Patterned Lines

• Monochrome Expansion

4.3.1 Drawing Rectangles

To draw a simple, solid-colored rectangle, the RAGE 128 uses the following steps:

1. Set up the desired drawing context.

2. Program the destination registers to the desired values.

To set up the context for drawing, determine the screen location where to draw the
rectangle.

For a clipped rectangle, program the scissor registers to the required parameters.

For a solid-filled rectangle, our data type is the current pixel depth, a solid brush is u
and the raster operation is a source copy.

The following code demonstrates how to draw a solid color rectangle. It is assumed
prior to calling this function, the engine has been initialized.

Example Code: Drawing a rectangle
void R128_DrawRectangle (DWORD x, DWORD y, DWORD width, DWORD height, DWORD
color)
{

DWORD temp;
DWORD save_dp_datatype;
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-4

d

a

. In this

In
hat
ion.
R128_WaitForFifo (6);
// Save the previous DP_DATATYPE setting
save_dp_datatype = regr (DP_DATATYPE);
temp = R128_GetBPPValue ();
regw (DP_DATATYPE,(temp|BRUSH_SOLIDCOLOR|ROP3_SRCCOPY));
regw (DP_BRUSH_FRGD_CLR, R128_GetcolorCode (color));
regw (DST_Y_X, (y << 16) | x);
regw (DST_WIDTH_HEIGHT, (width << 16) | height);
// Restore the DP_DATATYPE register
regw (DP_DATATYPE, save_dp_datatype);
return;

} // R128_DrawRectangle ()

Bit Block Transfer
One of the most widely used drawing features is the bit block transfer. This comman
transfers a bitmap or block of data from one area of video memory to another.

To transfer data within frame buffer from one location to another, and to transfer dat
from system memory to frame buffer, the RAGE 128 uses hardware support.

Source - the location where the data is taken from.

Destination - the location where the data is transferred to.

The size of the data transfer determines the size of a rectangular area on the screen
sense, Block Transfer means copying a group of pixels from one place to another with
some manipulation of the pixels.

The following types of pixels are involved in a block transfer:

• Source

• Destination

• Brush pattern

The resulting destination is the combination of one, two, or all of three components.
this sense, all three are considered components of the source before the operation t
combines them, and only the result of the combination is considered as the destinat

For block data transfers, specify the following:

• Location

• Dimension of the source

• Destination
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-5

nto the

e

n of
 by a
rush

ion.

at of

o the
 the
• Setup parameters

The following types of data transfer can occur:

• BitBlt
This is also called BitBlt or source copy. The source content is copied to the
destination without any changes to its dimensions.

• Scaled BitBlt
The source is stretched or compressed in the process of data transfer and fitted i
destination dimensions.

• Transparent BitBlt
This transfer is similar to BitBlt except that it makes the background image at the
destination shown through the image copied from the source (i.e. as if the sourc
image is transparent).

BitBlt - Bit Block Transfer
This operation transfers pixels from a source rectangle to a destination. The dimensio
the transferred rectangle remains the same as the source. The transfer is controlled
ternary-raster operation code that specifies how the pixels from the source and the b
pattern are mixed with those of the destination to form the final pixels at the destinat

In addition to normal data transfer (i.e. the data transfer that does not change the form
the data taken from the source before placing it at the destination), the RAGE 128
supports monochrome to color expansion when transferring a monochrome bitmap t
CRT screen. For color expansion, specify the foreground and background colors for
bitmap. The RAGE 128 will convert the white bit (1) to the foreground color of the
corresponding pixel and the black bit (0) to the background color.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-6

Example Code: Copying an image from a source to a destination
void R128_Blt (WORD src_x, WORD src_y, WORD src_width, WORD src_height,
 WORD dst_x, WORD dst_y)
{
 DWORD temp;
 DWORD save_dp_datatype, save_dp_cntl;
 WORD bytepp;

 // save the registers we will be modifying
 R128_WaitForFifo (2);
 save_dp_datatype = regr (DP_DATATYPE);
 save_dp_cntl = regr (DP_CNTL);

 temp = R128_GetBPPValue ();

 // Set DP_DATATYPE for a SRCCOPY, current pixel depth, src=dst
 // Brush setting does not matter.
 R128_WaitForFifo (6);
 regw (DP_DATATYPE, temp | (BRUSH_SOLIDCOLOR << 16) | SRC_DSTCOLOR);

 // Set DP_MIX to SRCCOPY, rectangular source
 regw (DP_MIX, ROP3_SRCCOPY | DP_SRC_RECT);

 // Set DP_CNTL for left to right x direction, top to bottom y direction
 regw (DP_CNTL, DST_X_LEFT_TO_RIGHT | DST_Y_TOP_TO_BOTTOM);

 // Set the source and destination x and y values
 regw (SRC_Y_X, (src_y << 16) | src_x);
 regw (DST_Y_X, (dst_y << 16) | dst_x);

 // Perform the blt
 regw (DST_HEIGHT_WIDTH, (src_height << 16) | src_width);

x 2

x 1

y 2

y 1

w

hSource

w

hDestination

Figure 4-1. BitBlt - Bit Block Transfer Copying an Image from Source to Destination
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-7

) the
 out

e

or

ster

tion,
el to
e

 and
 // restore the registers we modified
 R128_WaitForFifo (3);
 regw (SCALE_3D_CNTL, save_scale_3d_cntl);
 regw (DP_DATATYPE, save_dp_datatype);
 regw (DP_CNTL, save_dp_cntl);

 return;
} // R128_Blt ()

} // R128_Blt ()

Transparent BitBlt (Bit Block) Transfer
This operation conditionally copies pixels from the source to the destination with
reference to a designated (reference) color (e.g. the background color).

If the color of a pixel is equal to (or not equal to according to the comparison criterion
designated color, the pixel will not be copied to the destination. This operation filters
unwanted color from the source.

This operation is useful for:

• Copying odd-shaped objects onto a background with patterns (e.g. games).

• Making objects look transparent.

Since a transparent BitBlt operation is more complicated than a BitBlt operation, som
terminology needs to be clarified before proceeding with an example.

For this operation, source means a color pixel that may come from one of the following
sources:

• One of foreground or background colors used to expand a mono bitmap to a col
bitmap.

• A color pixel from either the frame buffer or the host memory.

• A color pixel of a color pattern (brush).

The source pixel may be combined with the destination pixel according to a given ra
operation code (e.g. AND operation) resulting in the combined source pixel.

To prevent certain colors of combined source pixels from being written to the destina
two color comparators are used for deciding whether to write a combined source pix
the destination or to keep the original destination pixel. The comparators compare th
source and destination pixels respectively against their reference colors (the source
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-8

n to
destination references), and decide whether the combined source pixel can be writte
the destination. The following lists the strategies for making such a decision:

Table 4-1 Source Comparator

Decision
Code Description

0
Combined pixels are always written to the destination, i.e. no comparison is
performed.

1
No combined pixel is written to the destination, i.e. the destination pixel is
unchanged.

4
The combined pixel is written to the destination if the color of the source
pixel is equal to its reference color. Otherwise, the destination pixel is
unchanged.

5
The combined pixel is written to the destination if the color of the source
pixel is NOT equal to its reference color. Otherwise, the destination pixel is
unchanged.

7

Only the source pixels whose color is equal to the reference color will be
XORed with the foreground color of the source bitmap, and then written to
the destination. That is, destPixel = srcPixel XOR foreground Color if
srcPixel is equal to the foreground color of the source bitmap. This is
sometimes referred to as flipping.

Table 4-2 Destination Comparator

Decision
Code Description

0
Combined pixels are always written to the destination, i.e. no comparison is
performed.

1
No combined pixel is written to the destination, i.e. the destination pixel is
unchanged.

4
The destination is unchanged if the color of the destination pixel is equal to
its reference color. Otherwise, the combined source pixel are written to the
destination.

5
The destination is unchanged if the color of the destination pixel is NOT
equal to its reference color. Otherwise, the combined source pixel are
written to the destination.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-9

bled.

t

he

The two tables give the decision strategy whenever either of the comparators is ena

• If both comparators are enabled, the final decision will depend on the agreemen
between the two decisions made separately.

• If both comparators decide that the combined source pixel should be written to t
destination, the destination will be updated with the pixel (otherwise, the original
destination pixel is preserved).

Example Code: Transparent BitBlt Operation
void R128_TransparentBlt (_tbltdata TBLT)
{

DWORD temp, save_dp_mix, save_dp_cntl, save_dp_datatype;
WORD loop, space, num_images;

R128_WaitForFifo (3);
save_dp_mix = regr (DP_MIX);
save_dp_cntl = regr (DP_CNTL);
save_dp_datatype = regr (DP_DATATYPE);

 // Set up the drawing context
R128_WaitForFifo (4);
regw (DP_MIX, ROP3_SRCCOPY | DP_SRC_RECT);
regw (SRC_SC_BOTTOM_RIGHT, 0x1FFF << 16 | 0x1FFF);
regw (DP_CNTL, DST_X_LEFT_TO_RIGHT | DST_Y_TOP_TO_BOTTOM);
temp = R128_GetBPPValue ();
regw (DP_DATATYPE, temp | SRC_DSTCOLOR | BRUSH_SOLIDCOLOR);

R128_WaitForFifo (4);
// set up the transparency function in the color compare circuitry
regw (CLR_CMP_CLR_DST, R128_GetcolorCode (TBLT.dst_clr));
regw (CLR_CMP_CLR_SRC, R128_GetcolorCode (TBLT.src_clr));
regw (CLR_CMP_MASK, 0xFFFFFFFF);
regw (CLR_CMP_CNTL, (TBLT.cmp_src << 24) |

 (TBLT.dst_cmp_fcn << 8) |
 TBLT.src_cmp_fcn);

// Set up source and destination x and y values
R128_WaitForFifo (3);
regw (SRC_Y_X, (TBLT.src_y << 16) | TBLT.src_x);
regw (DST_Y_X, (TBLT.dst_y << 16) | TBLT.dst_x);
regw (DST_HEIGHT_WIDTH, (TBLT.src_height << 16) | TBLT.src_width);

 // Restore the modified registers
R128_WaitForFifo (3);
regw (DP_MIX, save_dp_mix);
regw (DP_CNTL, save_dp_cntl);
regw (DP_DATATYPE, save_dp_datatype);

return;

} // R128_TransparentBlt ()
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-10

g the
he
the
n of
Scaled Block Transfer
This operation copies a block of pixels from the source to the destination while scalin
dimensions of the source to fit in the dimensions of the destination. In other words, t
source rectangle is stretched or compressed in the process of copying according to
specified destination dimensions, and the resulting rectangle is placed at the locatio
the destination. Refer to Figure 4-2. Scaled Image Transfer.

In a scaled data transfer:

• Source is defined by:

• Top-left corner coordinate is (X1, Y1)

• Height and width is (h1, W1)

• Destination is defined by:

• Top-left corner coordinate (X2, Y2)

• Height and width (h2, W2)

The scaling factors between the source and destination may be defined as:

• Width (i.e. x-direction) scaling factor is Sx = W1/W2

• Height (i.e. y-direction) scaling factor is Sy = H1/H2

x 2

x 1 y 2

y 1

w 1

h 1Source

w 2

h 2Destination

Figure 4-2. Scaled Image Transfer
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-11

e only
Since one of the three scaling parameters depends on the other two parameters, us
two parameters to specify the scaling of the source and destination.

Example Code: Scaled BitBlt operation
void R128_ScaleBlt (WORD src_x, WORD src_y, WORD src_width, WORD
src_height,
 WORD dst_x, WORD dst_y, WORD dst_width, WORD dst_height)
{
 DWORD save_tex_cntl, save_scale_3d_cntl;
 DWORD temp;
 double factor = 65536.0;
 double scalex, scaley;

 // Save the registers that we intend to modify
 R128_WaitForFifo (2);
 save_tex_cntl = regr (TEX_CNTL);
 save_scale_3d_cntl = regr (SCALE_3D_CNTL);

 R128_WaitForFifo (13);

 // Set DP_MIX for SRCCOPY, using rectangular source.
 regw (DP_MIX, ROP3_SRCCOPY | DP_SRC_RECT);

 // Set SCALE_3D_DATATYPE to the current pixel depth
 temp = R128_GetBPPValue (R128_AdapterInfo.bpp);
 regw (SCALE_3D_DATATYPE, temp);

 // enable scaling with blending
 regw (SCALE_3D_CNTL, 0x00000040);

 // Clear TEX_CNTL, so all texturing functions are disabled.
 regw (TEX_CNTL, 0x00000000);

 // Disable any motion compensation functions
 regw (MC_SRC1_CNTL, 0x00000000);

 // Set up the height and width of the source data
 regw (SCALE_SRC_HEIGHT_WIDTH, (src_height << 16) | src_width);

 // set SCALE_PITCH equal to the screen pitch, as we are loading the
source
 // image in a rectangular trajectory in offscreen memory.
 regw (SCALE_PITCH, R128_AdapterInfo.pitch);

 // calculate the scaling factors for both x and y directions
 scalex = (double)src_width/(double)dst_width;
 scaley = (double)src_height/(double)dst_height;

 // Both the increment registers are 12 bit fractional, 4 bit integer
 // so we multiply the scaling factor by 65536 to convert the value
 // to this format.
 regw (SCALE_X_INC, (DWORD)(scalex * factor));
 regw (SCALE_Y_INC, (DWORD)(scaley * factor));
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-12

ing
 // Clear out the accumulator registers
 regw (SCALE_HACC, 0x00000000);
 regw (SCALE_VACC, 0x00000000);

 // Set the dst location
 regw (SCALE_DST_Y_X, (dst_y << 16) | dst_x);

 // Perform the blt
 regw (SCALE_DST_HEIGHT_WIDTH, (dst_height << 16) | dst_width);

 // Now restore the registers we changed.
 R128_WaitForFifo (2);
 regw (TEX_CNTL, save_tex_cntl);
 regw (SCALE_3D_CNTL, save_scale_3d_cntl);

 return;

} // R128_ScaleBlt ()

4.3.2 Drawing Lines

Drawing lines can be accelerated by using the RAGE 128’s hardware support for
bresenham lines. The GUI must be programmed with the appropriate increment,
decrement and error values to satisfy the bresenham algorithm as noted in the follow
code.

Example Code: Accelerated line drawing
void R128_DrawLine (WORD x1, WORD y1, WORD x2, WORD y2, DWORD color)
{
 int dx, dy;
 int small, large;
 int x_dir, y_dir, y_major;
 int err, inc, dec, temp;
 DWORD save_dp_cntl, save_dp_datatype, bppvalue;

 // Determine x & y deltas and x & y direction bits.
 if (x1 < x2)
 {
 dx = x2 - x1;
 x_dir = 1 << 31;
 }
 else
 {
 dx = x1 - x2;
 x_dir = 0 << 31;
 } // if

 if (y1 < y2)
 {
 dy = y2 - y1;
 y_dir = 1 << 15;
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-13

 }
 else
 {
 dy = y1 - y2;
 y_dir = 0 << 15;
 } // if

 // Determine x & y min and max values; also determine y major bit.
 if (dx < dy)
 {
 small = dx;
 large = dy;
 y_major = 1 << 2;
 }
 else
 {
 small = dy;
 large = dx;
 y_major = 0 << 2;
 } // if

 // Calculate Bresenham parameters and draw line.
 err = (DWORD) (-large);
 inc = (DWORD) (2 * small);
 dec = (DWORD) (-2 * large);

 R128_WaitForFifo (11);

 save_dp_cntl = regr (DP_CNTL);
 save_dp_datatype = regr (DP_DATATYPE);

 // Set DP_DATATYPE
 bppvalue = R128_GetBPPValue (R128_AdapterInfo.bpp);
 regw (DP_DATATYPE, (bppvalue | BRUSH_SOLIDCOLOR | ROP3_SRCCOPY));

 // Draw Bresenham line.
 regw (DP_BRUSH_FRGD_CLR, R128_GetcolorCode(color));
 regw (DST_Y_X, (y1 << 16) | x1);

 // Allow setting of last pel bit and polygon outline bit for line draw-
ing.
 regw (DP_CNTL_XDIR_YDIR_YMAJOR, (y_major | y_dir | x_dir));
 regw (DST_BRES_ERR, err);
 regw (DST_BRES_INC, inc);
 regw (DST_BRES_DEC, dec);
 regw (DST_BRES_LNTH, (DWORD) (large + 1));
 regw (DP_CNTL, save_dp_cntl);
 regw (DP_DATATYPE, save_dp_datatype);

 return;

} // R128_DrawLine ()
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-14

data
Drawing Patterned Lines
The RAGE 128 can also draw patterned lines. Pattern data is loaded into the brush
registers, and the appropriate brush is selected using
DP_BRUSH_DATATYPE@DP_DATATYPE.

Five brush types are suitable for patterned lines. They are:

• 8x1 mono pattern

• 8x1 mono pattern (leave background alone)

• 32x1 mono pattern

• 32x1 mono pattern (leave background alone)

• 8x1 color (pixel type is the same as the destination).

The following is some sample code to demonstrate drawing a patterned line:

Example Code: Drawing a patterned line
void R128_DrawPatternLine (WORD x1, WORD y1, WORD x2, WORD y2,
 DWORD brushtype, DWORD *data)
{
 int dx, dy;
 int small, large;
 int x_dir, y_dir, y_major;
 int err, inc, dec, temp;
 DWORD save_dp_cntl, save_dp_datatype, bppvalue;

 R128_LoadPatternData (brushtype, data);

 // Determine x & y deltas and x & y direction bits.
 if (x1 < x2)
 {
 dx = x2 - x1;
 x_dir = 1 << 31;
 }
 else
 {
 dx = x1 - x2;
 x_dir = 0 << 31;
 } // if

 if (y1 < y2)
 {
 dy = y2 - y1;
 y_dir = 1 << 15;
 }
 else
 {
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-15

ap.
 the
e
 dy = y1 - y2;
 y_dir = 0 << 15;
 } // if

 // Determine x & y min and max values; also determine y major bit.
 if (dx < dy)
 {
 small = dx;
 large = dy;
 y_major = 1 << 2;
 }
 else
 {
 small = dy;
 large = dx;
 y_major = 0 << 2;
 } // if

 // Calculate Bresenham parameters and draw line.
 err = (DWORD) (-large);
 inc = (DWORD) (2 * small);
 dec = (DWORD) (-2 * large);

 R128_WaitForFifo (11);

 save_dp_cntl = regr (DP_CNTL);
 save_dp_datatype = regr (DP_DATATYPE);

 // Set DP_DATATYPE
 bppvalue = R128_GetBPPValue (R128_AdapterInfo.bpp);
 regw (DP_DATATYPE, (bppvalue | brushtype | ROP3_PATCOPY));

 // Draw Bresenham line.
 regw (DST_Y_X, (y1 << 16) | x1);

 // Allow setting of last pel bit and polygon outline bit for line draw-
ing.
 regw (DP_CNTL_XDIR_YDIR_YMAJOR, (y_major | y_dir | x_dir));
 regw (DST_BRES_ERR, err);
 regw (DST_BRES_INC, inc);
 regw (DST_BRES_DEC, dec);
 regw (DST_BRES_LNTH, (DWORD) (large + 1));
 regw (DP_CNTL, save_dp_cntl);
 regw (DP_DATATYPE, save_dp_datatype);

 return;

} // R128_DrawPatternLine ()

Monochrome Expansion
This operation accepts monochrome data and expands this data into a two color bitm
This is particularly useful for displaying text. The monochrome expansion circuitry on
RAGE 128 allows for expanding both the foreground and background data, or just th
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-16

ia the

ame

st
foreground, leaving the background alone. The data must be sent to the controller v
host data registers.

The controller does not support monochrome expansion of data that resides in the fr
buffer.

The following code shows how to perform a monochrome expansion blt using the ho
data registers to move the data to the engine.

Example Code: Monochrome expanded Blt operation
void MEBltThruHostData (DWORD *pSrc, WORD NumDWORDS, blt_data * pData)
{
 int loop;
 DWORD temp;

 R128_WaitForFifo (7);

 temp = R128_GetBPPValue (R128_AdapterInfo.bpp);

 // First write GUI_MASTER_CNTL.
 regw (DP_GUI_MASTER_CNTL,
 (0 << 0) | // Use DEFAULT_OFFSET and DEFAULT_PITCH for SRC
 (0 << 1) | // Use DEFAULT_OFFSET and DEFAULT_PITCH for DST
 (0 << 2) | // Use DEFAULT_SC_BOTTOM_RIGHT
 (1 << 3) | // Use SC_TOP_LEFT and SC_BOTTOM_RIGHT for DST
 (0xC << 4) | // Brush type ignored.
 (temp << 8) | // Set DST_DATATYPE to the current bpp
 (0 << 12) | // Expand to foreground and background.
 (1 << 14) | // Consume monochrome data from LSbit to MSbit
 (0 << 15) | // Set Conversion temp to 6500k
 (0xCC << 16) | // Set ROP3 to SRC_COPY
 (3 << 24) | // Source Data is from HOSTDATA registers.
 (0 << 27) | // Clear 3D_SCALE_CNTL (Disable 3D engine)
 (1 << 28) | // Clear CLR_CMP_CNTL (Disable Color Compare)
 (1 << 29) | // Clear AUX_SC_CNTL (Disable Auxilary Scissors
 (1 << 30) | // Set DP_WRITE_MASK to 0xFFFFFFFF
 (0 << 31) // No BRUSH_X_Y required.
);

 // Set the colors for the expanded data.
 temp = R128_GetcolorCode (pData->frgd);
 regw (DP_SRC_FRGD_CLR, temp);
 temp = R128_GetcolorCode (pData->bkgd);
 regw (DP_SRC_BKGD_CLR, temp);

 // Setup the destination trajectory.
 regw (DST_X_Y, ((pData->x << 16) | pData->y));
 regw (DST_WIDTH_HEIGHT, ((pData->w << 16) | pData->h));

 // Write the data out to the HostData registers. We write the number of
 // DWORDs less the last one, which we must write out to HOST_DATA_LAST
to
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-17

 // tell the GUI engine that the HOSTDATA operation is complete.

 for (loop = 0; loop < NumDWORDS-1; loop++)
 {
 R128_WaitForFifo (1);
 regw (HOST_DATA0, *pSrc);
 pSrc += 1; // increment the data pointer
 }

 // Write out the final piece of data.
 R128_WaitForFifo (1);
 regw (HOST_DATA_LAST, *pSrc);

}

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-18

of

he

s the

ot of
4.4 Hardware Cursor
The RAGE 128 supports a hardware cursor. The cursor is represented by a bitmap
64x64 pixels. This map normally resides in the off-screen area of frame buffer.

Register CUR_OFFSET points to the memory location of the bitmap, with reference to t
beginning of frame buffer.

The cursor actually seen on the screen may be smaller than the bitmap, and occupie
top right corner of the bitmap. Therefore, the reduction in the bitmap’s horizontal and
vertical dimensions needs to be specified in the CUR_HORZ_VERT_OFF register. The
coordinate (i.e. screen location) of the displayed cursor is determined by the
CUR_HORZ_VERT_POSN register.

The hotspot (i.e. the “sensor” of the cursor) is inside the displayed cursor. The hotsp
the RAGE 128’s cursor is at the top-left corner of the display cursor.

Displayed
Cursor

64 pixels

64 l ines

C U R _ H O R Z _ O F F S E T

C U R _ V E R T _ O F F S E T

C U R _ H O R Z _ P O S N

C U R _ V E R T _ P O S N

x

y

Screen

Hotspot

CUR_OFFSET

Figure 4-3. Cursor Related Parameters
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-19

nt the
ry
te

and
olor

pixel
The cursor bitmap consists of 64 rows, and each row has 64 pixels. Each pixel is
represented by two bits. One is called the AND bit and the other is the XOR bit.
Therefore, each row of the bitmap is represented by 128 bits. The first 64 bits represe
AND bits of the 64 pixels, and the remaining bits represent the XOR bits. The memo
organization of the bitmap is shown as follows. In the table, entries Pixel, Bit and By
denote the pixel, bit and byte positions of a pixel in a row.

• Row_x_A denote the positions of AND bits.

• Row_x_X denote the positions of XOR bits.

The hardware cursor is specified by the following parameters:

• Cursor Pixel

• Cursor Pitch

• Cursor Position

Cursor Pixel
This pixel is represented by two bits. The following table shows the possible values
their meanings. The colors stored in registers CUR_CLR0 and CUR_CLR1 contain c
codes in the 24-bit RGB format (i.e. the true-color format), regardless of the current
depth.

Table 4-3 Pixel Location in Memory

Pixel 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... 56 57 58 59 60 61 62 63

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Row_0_A byte 0 byte 1 byte 7

Row_0_X byte 8 byte 9 byte 15

Row_1_A byte 16 byte 17 byte 23

Row_1_X byte 24 byte 25 byte 31

...

Row_63_A byte 1008 byte 1009 byte 1015

Row_63_X byte 1016 byte 1017 byte 1023
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-20

Hardware Cursor

ixel

ither its

 spot
is
ome
g
Cursor Pitch
This is always 64 pixels. That is, each scan line of the hardware cursor definition is
defined with 64*2 bits (16 bytes) of data, regardless of the actual cursor width. The p
definition is specified in the Intel order.

Cursor Position
This specifies the coordinate of the top-left corner of the cursor on the screen. The
coordinate is stored in register CUR_HORZ_VERT_POSN, which tells the current
coordinate as the cursor moves around. When the cursor goes outside the screen, e
horizontal or vertical coordinate may become negative.

In such a circumstance, RAGE 128 will not display the cursor at all. However, the hot
of the cursor, which is inside of the displayed cursor, may still be on the screen, but
ineffective since the left-to corner of the cursor falls outside the screen. Therefore, s
adjustment to the cursor-related parameters has to be made to keep the cursor bein
display partially when the left-top corner of the cursor falls outside the screen.

Example Code: Initializing a hardware cursor
void R128_SetHWCursor (BYTE cursor)
{

DWORD cur_offset, horz_offset, vert_offset;
DWORD temp;

// Check that cursor size is within limits
if ((CURSORDATA[cursor].width < 1) || (CURSORDATA[cursor].width > 64))

return;
if ((CURSORDATA[cursor].height < 1) || (CURSORDATA[cursor].height > 64))
return;

// determine offsets within cursor bitmap
horz_offset = 64 - CURSORDATA[cursor].width;
vert_offset = 64 - CURSORDATA[cursor].height;

CURSORDATA[cursor].cur_offset = R128_AdapterInfo.MEM_BASE +

Table 4-4 Cursor Pixel

AND XOR Resulting Pixel

0 0 Cursor color 0 that is given in register CUR_CLR0.

0 1 Cursor color 1 that is given in register CUR_CLR1.

1 0 Transparent

1 1 Compliment of the current display pixel value.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 4-21

Hardware Cursor
CURSORDATA[cursor].cur_offset;

// Set cursor size offsets.
regw (CUR_HORZ_VERT_OFF, (horz_offset << 16) | vert_offset);

// Set cursor offset to cursor data region.
regw (CUR_OFFSET, CURSORDATA[cursor].cur_offset);

} // R128_SetHWCursor ()
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
4-22 Proprietary and Confidential

 of
 in

e
m

stood
 of

ugh:
Chapter 5
CCE Engine Initialization and Usage

5.1 Scope
The Concurrent Command Execution (CCE) Engine mode provides a simple method
programming 2D drawing operations. Instead of making register writes as you would
programmed I/O mode (PIO), simply submit a packet to the CCE ring buffer.

The CCE microengine automatically parses the packet and programs the necessary
registers. This method of programming is very efficient because the CCE microengin
uses the bus mastering capabilities of the RAGE 128 to send the packets from syste
memory to the graphics controller.

In the past, the CCE registers were known as the ProMo4 (PM4) registers. ProMo4
for ‘Programming Model 4’ (i.e., programming the hardware thorough the submission
packets).

The other three methods, collectively known as PIO modes, were register writes thro

• The I/O space.

• The small aperture in VGA space.

• The register aperture.

The following figure shows:

• The architecture of the RAGE 128

• How the CCE microengine relates to the rest of the controller.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 5-1

Scope
Host Application

AGP or PCI GART memory

Ring
Buffer

Indirect
Buffer

text

V G A
Control ler

Accelerator Control ler

CCE FIFO Buf fer

CCE Microengine

Command FIFO Buf fer

Frame Buffer

3D
Setup

Engine

3D
Render
Engine

2D
Render
Engine

PCI
Host Interface

I/O

P
IO

CCE Bus Master

Rage 128

V
G

A
 P

IO

C
C

E
 P

IO
AGP Host Interface

Figure 5-1. RAGE 128 Structure and Data Flow
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
5-2 Proprietary and Confidential

Starting the CCE Microengine

IO
ting

ngine
ine is in

e
5.2 Starting the CCE Microengine
For the purpose of this explanation, it is assumed that the RAGE 128 is working in P
(i.e., programmable Input and Output) mode, and that the GUI engine is busy execu
the commands in the command FIFO buffer.

5.2.1 Wait for Engine Idle

Prior to any writes to any CCE register, it is essential to check the state of the GUI e
to ensure that the contents of the command FIFO have been processed and the eng
a state of idleness.

5.2.2 Load the Microcode into the Microengine

The microcode for the microengine is 256 QWORDs long, and can be loaded into th
microengine through writing to the following registers:

• PM4_MICROCODE_DATAH, and

• PM4_MICROCODE_DATAL

The RAGE 128 needs to be informed of the microcode’s starting address in
PM4_MICROCODE_ADDR before loading begins.

Example Code: Loading the microcode into the microengine
DWORD CCE_Microcode[256][2]={
 {high DWORD, low DWORD},
 ...
 {high DWORD, low DWORD}
};

void CCELoadMicrocode (void)
{
 int i;

 // Wait for engine idle before loading the microcode.

 R128_WaitForIdle ();

 // Set starting address for writing the microcode.

 regw (PM4_MICROCODE_ADDR, 0);
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 5-3

Starting the CCE Microengine

al
d the

 of
nsfer,
g

ad
ecide

 the

ing

er,
sfer
 for (i = 0; i < 256; i += 1)
 {
 // The microcode write address will automatically increment after
 // every microcode data high/low pair. Note that the high DWORD
 // must be written first for address autoincrement to work cor-
rectly.

 regw (PM4_ MICROCODE_DATAH, CCE_Microcode[i][0]);
 regw (PM4_ MICROCODE_DATAL, CCE_Microcode[i][1]);
 } // for

 return;
} // CCELoadMicrocode
} // CCELoadMicrocode

5.2.3 Load the CCE Registers

Assuming that the size of the ring buffer is 1MB and it starts at address 0 in the virtu
memory space, the free-area pointer must point to the beginning of the ring buffer an
RAGE 128 must be initiated to the CCE-bus mastering mode.

Also, the RAGE 128 must inform the host of the ring buffer’s status after the transfer
the packets in the ring buffer is completed. That is, after a certain amount of data tra
the head of packet queue in the ring buffer must be updated using the bus-masterin
method.

In the following programming example, the RAGE 128 is set to update the queue he
pPacketQueue after every transfer of 64 DWORDs. There are four parameters that d
the thresholds of initiating data transfer from the ring buffer, and when the pointer to
packet queue in the ring buffer is to be updated. The parameters are:

• The minimum amount of data to be transferred from the ring buffer before updat
the packet queue pointer pPacketQueue at the host.

• The minimum number of DWORDs, L, in the Ring Buffer before initiating a data
transfer.

• The minimum number of DWORDs, M, in the Command FIFO buffer before
initiating a data transfer.

• The minimum number of DWORDs, N, in the CCE FIFO buffer before initiating a
data transfer.

If we denote the actual numbers of DWORDs in the ring buffer, command FIFO buff
and CCE FIFO buffer respectively by l, m and n, the condition for initiating a data tran
is as follows:
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
5-4 Proprietary and Confidential

Starting the CCE Microengine
• l > L, or

• m < or = M, or

• n < or = N.

Now let L = 16, M = 8, and N = 8, the following example will set up the microengine
according to the specification.

Example Code: Initializing the microengine
// Note that the ring buffer size must be power-of-2, min size 2 DWORDs

#define RING_SIZE 0x00040000 // 1MB ring buffer (256k DWORDs)
#define RING_SIZE_LOG2 17 // log2 (RING_SIZE) - 1

#define CCE_WATERMARK_L 16
#define CCE_WATERMARK_M 8
#define CCE_WATERMARK_N 8
#define CCE_WATERMARK_K 128

typedef struct tagRBINFO {
 volatile DWORD *ReadIndexPtr; // Current Read pointer index
 DWORD ReadPtrPhysical; // Physical address of read pointer
 DWORD WriteIndex; // Current write pointer index
 DWORD *LinearPtr; // Virtual address of ring buffer
 DWORD Size; // Size of ring buffer in DWORDs
} RBINFO;

#define RING_SIZE 0x00000800
DWORD dwRingBuf[RING_SIZE];
struct {
 DWORD *pPacketQueue,*pPacketQrec, *pFreeArea;
 DWORD dwRingSize, dwSpaceAvail, *pRingStart;
} Svr = {dwRingBuf, dwRingBuf, dwRingBuf, RING_SIZE, RING_SIZE, dwRingBuf};

void InitMicroEngine (void)
{
 // Set the start address of ring buffer.

 regw (PM4_BUFFER_OFFSET, dwRingBuf);

 // Set the pointer of the area for fill packets.

 regw (PM4_BUFFER_DL_WPTR, svr.pFreeArea);

 // Set up the threshholds of initiating a data transfer
 // from the ring buffer to the PM4 FIFO buffer.

 regw (PM4_BUFFER_WM_CNTL, 0x02020204);

 // Set Rage 128 to the CCE bus mastering mode with full use of the CCE
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 5-5

Starting the CCE Microengine
 // FIFO buffer (192 DWORDs), and set the size of ring buffer to 8 K.

 regw (PM4_BUFFER_CNTL, 0x2000000A);

 // Set the pointer to the head of the packet queue in the ring buffer

 regw (PM4_BUFFER_DL_RPTR_ADDR, &svr.pPacketQueue);
} // InitMicroEngine

int R128_CCEInit (int index)
{
 DWORD cce_buf_size;

 // Load CCE Microcode

 CCELoadMicrocode ();

 // Validate CCEmode and set up necessary parameters

 if ((index < CCE_MODE_192PIO) ||
 (index > CCE_MODE_64PIO_64VERPIO_64INDPIO))
 {
 return (CCE_FAIL_INVALID_CCE_MODE);
 } // if

 // Perform a soft reset of the engine

 R128_ResetEngine ();

 CCEFifoSize = CCEmode[index].fifosize;
 CCEBMFlag = CCEmode[index].busmaster;
 if (CCEBMFlag)
 {
 R128_CCESubmitPackets = CCESubmitPacketsBM;
 if (CCESetupBusMaster ())
 {
 return (CCE_FAIL_BUS_MASTER_INIT);
 } // if
 cce_buf_size = RING_SIZE_LOG2;
 bm_save_state = regr (BUS_CNTL);
 regw (BUS_CNTL, (bm_save_state & ~BUS_MASTER_DIS));
 }
 else
 {
 R128_CCESubmitPackets = CCESubmitPacketsPIO;
 cce_buf_size = 0;
 } // if

 // Set the Rage 128 to requested CCE mode.
 CCERequestedMode = CCEmode[index].pm4buffermode + cce_buf_size;
 regw (PM4_BUFFER_CNTL, CCERequestedMode);

 // Set the CCE to free running mode
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
5-6 Proprietary and Confidential

Starting the CCE Microengine
 regw (PM4_MICRO_CNTL, PM4_MICRO_FREERUN);

 return (CCE_SUCCESS);
} // R128_CCEInit
int CCESetupBusMaster (void)
{
 _AGP_INFO *AGP_Info;
 DWORD ring_buf_offset, read_ptr_offset;

 // For the sake of simplicity, put the ring buffer at the start of AGP
 // space, factoring in alignment restrictions.

 ring_buf_offset = 0;

 // Align the offset to a 128-byte boundary. Strictly speaking, since an
 // offset of zero was chosen, the following step is unnecessary, but it
 // is good form to perform this step in case the ring buffer needs to be
 // elsewhere.

 ring_buf_offset = align (ring_buf_offset, 128);
 read_ptr_offset = align ((DWORD) readbuf, 32);
 RingBuf.ReadIndexPtr = (DWORD *) read_ptr_offset;
 R128_Delay (1);
 RingBuf.ReadPtrPhysical = GetPhysical (read_ptr_offset);
 RingBuf.Size = RING_SIZE;
 RingBuf.WriteIndex = 0;

 if (R128_InitAGP (APERTURE_SIZE_4MB))
 {
 CCEAGPFlag = TRUE;
 GetAGPINFO (&AGP_Info);
 RingBuf.LinearPtr = (DWORD *) (AGP_Info->LogicalAddress +
ring_buf_offset);
 regw (PCI_GART_PAGE, PCI_GART_DIS);
 }
 else
 {
 // No AGP available, use PCI GART mapping instead.

 CCEAGPFlag = FALSE;
 if (!(PCIGartInfo = SetupPCIGARTTable (APERTURE_SIZE_4MB)))
 {
 // If even a PCI GART table is not available, then bus mastering
 // is not possible.

 return (CCE_FAIL_BUS_MASTER_INIT);
 } // if

 RingBuf.LinearPtr = PCIGartInfo->pointer +
 (ring_buf_offset/sizeof (DWORD));

 // Write the GART page address. Since this address is 4KB
 // aligned, bit 0 is cleared. Hence, GART will be enabled.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 5-7

Starting the CCE Microengine

er.
 regw (PCI_GART_PAGE, PCIGartInfo->paddress);
 } // if

 // Set the start offset of the ring buffer.

 regw (PM4_BUFFER_OFFSET, (ring_buf_offset + 0x02000000));

 regw (PM4_BUFFER_DL_WPTR, RingBuf.WriteIndex);
 regw (PM4_BUFFER_DL_RPTR, RingBuf.WriteIndex);

 // Put the physical address of read pointer into PM4_BUFFER_DL_RPTR_ADDR

 regw (PM4_BUFFER_DL_RPTR_ADDR, RingBuf.ReadPtrPhysical);

 // Set watermarks for CCE

 regw (PM4_BUFFER_WM_CNTL, (CCE_WATERMARK_K/64) << 24 |
 (CCE_WATERMARK_N/4) << 16 |
 (CCE_WATERMARK_M/4) << 8 |
 CCE_WATERMARK_L/4);

 return (CCE_SUCCESS);
} // CCESetupBusMaster

5.2.4 Cautions When Programming RAGE 128 in CCE Mode

• All packets must be checked for proper formatting prior to submission to the serv
Incorrectly-formatted packets will cause the RAGE 128 to hang.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
5-8 Proprietary and Confidential

Ring Buffer Management

ough
ader

tion

hen it
AGE

at the
ere
ine
ches
5.3 Ring Buffer Management

5.3.1 The Ring Buffer Concept

When operating in CCE mode, the RAGE 128 receives commands from the host thr
the CCE command packets. A command packet is a data block that consists of a he
followed by a data body of variable size. When operating in bus-mastering mode,
command packets are sent to the RAGE 128 through a ring buffer and/or an indirect
buffer.

The ring buffer is a contiguous block of system memory allocated by the host applica
in AGP or PCI GART memory. For more details about PCI GART memory, refer to
Section 2.6.6.

The RAGE 128 treats this buffer as a ring by wrapping back to the starting address w
reaches the end. The starting address and the size of the buffer are passed to the R
128 when initializing it for CCE bus-mastering mode.

The host application copies packets into the ring buffer in consecutive order starting
top. The packets are bus-mastered to the RAGE 128's on-chip CCE FIFO buffer, wh
they are processed by the microengine in the order they are received. The microeng
places it's output into the command FIFO as register-datum pairs. When the host rea
the end of the block, it starts copying at the top again. The following figure shows a
conceptual representation of the ring buffer.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 5-9

Ring Buffer Management

-wise
he last
by the

a free

ea.

.

 the
 128.

nters
he host
The above figure shows that the command packets are placed into the buffer in clock
order, forming a packet queue. The first packet in the queue is denoted by P1, and t
by Pn. The start of the queue, P1, is pointed to by both a packet pointer maintained
application, and the RAGE 128's PM4_BUFFER_DL_RPTR register. The memory
portion that is not occupied by packets is called the free area. It is pointed to by both
buffer pointer maintained by the application and the Rage 128's
PM4_BUFFER_DL_WPTR register. All incoming packets should be placed into this ar

Initially, both the packet and free area pointers point at the start of the memory block
Thereafter, whenever the two pointers meet it implies that the ring buffer is either
completely empty or completely full. It is assumed that the data processing speed of
RAGE 128 is faster than the speed of data transfer from the ring buffer to the RAGE
Therefore, this condition is generally interpreted as the ring buffer being empty.

As packets are put into and taken out of the ring buffer, the packet and free area poi
must be updated to keep track. The updates should be kept synchronized between t

DL_WPTR

AGP / PCI
Interface

Ring Buffer Server

Driver(s)

DL_RPTR

PM4_BUFFER_OFFSET

PM4_BUFFER_CNTL_SIZE
@PM4_BUFFER_CNTL

DL_RPTR_ADDR

CCE FIFO Buffer

RAGE 128HOST

Ring Buffer Pointer

Ring Buffer Size

Packet Pointer

Free Buffer Pointer

free space

P 1

P 2 P n

end of
buffer

start of
buffer

Ring
Buffer

Figure 5-2. Ring Buffer and its Control Structure
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
5-10 Proprietary and Confidential

Ring Buffer Management

acket
ter to
riting

queue

at it
ating

he

ong
ethod
sive
ets to
 buffer.

ance

ated
 head
the
application and the RAGE 128. On the host side, the application places a command p
at the location pointed to by the current free area pointer, updates the free area poin
point just beyond this new packet, and updates the RAGE 128 free area pointer by w
the new free area address to the PM4_BUFFER_DL_WPTR register.

On the RAGE 128 side, packets are read one at a time from the head of the packet
pointed to by the PM4_BUFFER_DL_RPTR register, and sent to the CCE FIFO buffer.
The PM4_BUFFER_DL_RPTR register is updated automatically after each packet
transfer. The updated packet pointer must be sent back to the host application so th
may keep track of the available free space. The RAGE 128 accomplishes this by upd
the application's packet pointer through a bus-mastering operation. The address of t
application's packet pointer must be written to the RAGE 128's
PM4_BUFFER_DL_RPTR_ADDR register during CCE initialization. Note that the AGP
interface stops data transfer once pointer PM4_BUFFER_DL_RPTR meets
PM4_BUFFER_DL_WPTR.

5.3.2 Ring Buffer Server

In an operating system environment, there may be a need to share the ring buffer am
several clients, such as a 2D display driver and a 3D driver. In this circumstance, a m
is required to arbitrate the use of the ring buffer. One method is to grant clients exclu
access to the ring buffer through a server. Under this scheme, all clients submit pack
the server, and the server mediates and schedules delivery of the packets to the ring

The following is a sample function defined for the server. The function needs two entr
parameters. The address of client’s packet buffer *ClientBuf, and the size of the data
dwDataSize are submitted to the ring buffer. As the head of the packet queue is upd
by RAGE 128 through bus-mastering, the function keeps track of the updated queue
by keeping a copy for its own record, and updates the size of the available space at
same time.

Example Code: Ring buffer management
#define FAIL 0
#define SUCCESS 1
DWORD dwRingBuf[RING_SIZE];
struct {
 DWORD *pPacketQueue,*pPacketQrec, *pFreeArea;
 DWORD dwRingSize, dwSpaceAvail, *pRingStart;
} Svr = {dwRingBuf, dwRingBuf, dwRingBuf, RING_SIZE, RING_SIZE, dwRingBuf};

WORD SubmitPackets (DWORD *ClientBuf, DWORD dwDataSize)
{
 long n1, n2;
 int i,j;
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 5-11

Ring Buffer Management
 // update available space to synchronize the record with Rage 128

 if (Srv.pPacketQueue > Srv.pPacketQrec)
 {
 Srv.dwSpaceAvail += Srv.pPacketQueue - Srv.pPacketQrec;
 } // if
 if (Srv.pPacketQueue < Srv.pPacketQrec)
 {
 Srv.dwSpaceAvail += Srv.pPacketQueue - Srv.pPacketQrec + RING_SIZE;
 } // if
 Srv.pPacketQrec = Srv.pPacketQueue;
 if (Srv.dwSpaceAvail >= dwDataSize)
 {
 if (Srv.pFreeArea + dwDataSize <= Srv.pRingStart + RING_SIZE)
 {
 for (i = 0; i < dwDataSize; i++)
 {
 Srv.pFreeArea[i] = ClientBuf[i];
 } // for
 Srv.pFreeArea += dwDataSize;
 }
 else
 {
 n1 = Srv.pRingStart + RING_SIZE - Srv.pFreeArea;
 n2 = dwDataSize - n1;
 for (i = 0; i < n1; i++)
 {
 Srv.pFreeArea[i] = ClientBuf[i];
 } // for
 Srv.pFreeArea = Srv.pRingStart;
 for (j = 0; i < n2; i++, j++)
 {
 Srv.pFreeArea[j] = ClientBuf[i];
 } // for
 Srv.pFreeArea += n2;
 } // if
 WriteReg (PM4_BUFFER_DL_WPTR, svr.pFreeArea);
 Srv.dwSpaceAvail -= dwDataSize;
 return SUCCESS;
 }
 else
 {
 return FAIL;
 } // if
} // SubmitPackets

Example Code: Submitting packets using programmed I/O (PIO) mode
int CCESubmitPacketsPIO (DWORD *ClientBuf, DWORD DataSize)
{
 // Consume entries in the buffer two DWORDs at a time, splitting up the
 // writes to the even and odd registers.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
5-12 Proprietary and Confidential

Ring Buffer Management
 while (DataSize > 1)
 {
 CCEWaitForFifo (2);
 regw (PM4_FIFO_DATA_EVEN, *ClientBuf++);
 regw (PM4_FIFO_DATA_ODD, *ClientBuf++);

 DataSize -= 2;
 } // while

 // At this point, DataSize should be either 0 or 1, handle odd packet
 // accordingly.

 if (DataSize & 1)
 {
 CCEWaitForFifo (2);
 regw (PM4_FIFO_DATA_EVEN, *ClientBuf); // Write final packet
 regw (PM4_FIFO_DATA_ODD, CCE_PACKET2); // Write dummy packet
 } // to align if

 // N.B. A more sophisticated packet submission algorithm might try to
 // reduce the number of times that CCEWaitForFifo () is called and still
 // handle packets that are larger than the maximum CCE FIFO size. A
 // somewhat inefficient approach (waiting for 2 free entries each time
 // through the loop) is used above since it simplifies the example and
 // can handle arbitrary sized buffers.

 return (CCE_SUCCESS);
} // CCESubmitPacketsPIO

Example Code: Submitting packets with Bus Mastering
int CCESubmitPacketsBM (DWORD *ClientBuf, DWORD DataSize)
{
 DWORD *tptr;

 // We shall arbitrarily fail if the incoming packet is bigger than our
 // ring buffer. A better algorithm would break up the incoming packet
 // into small enough chunks to feed to the buffer.

 if (DataSize >= RingBuf.Size)
 {
 return (CCE_FAIL_BAD_PACKET);
 } // if

 tptr = RingBuf.LinearPtr + RingBuf.WriteIndex;
 while (DataSize > 0)
 {
 RingBuf.WriteIndex += 1;
 *tptr++ = *ClientBuf++;
 if (RingBuf.WriteIndex >= RingBuf.Size)
 {
 RingBuf.WriteIndex = 0;
 tptr = RingBuf.LinearPtr;
 } // if
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 5-13

Ring Buffer Management
 while (RingBuf.WriteIndex == *(RingBuf.ReadIndexPtr))
 {
 // Some form of timeout checking should be done here in
 // case the read pointer gets stuck due to an engine panic.
 } // while
 DataSize -= 1;
 } // while

 // Update pointer.

 regw (PM4_BUFFER_DL_WPTR, RingBuf.WriteIndex);
 return (CCE_SUCCESS);
} // CCESubmitPacketsBM

Example Code: Shutting down the microengine
void R128_CCEEnd (int waitmode)
{
 if (CCEBMFlag)
 {
 // Signal CCE that we are done submitting bus-mastered packets

 regw (PM4_BUFFER_DL_WPTR, RingBuf.WriteIndex | PM4_BUFFER_DL_DONE);
 } // if

 if (waitmode == CCE_END_WAIT)
 {
 // Wait for engine idle before ending. It does not matter if the
 // engine fails to idle as we will reset it shortly.

 CCEWaitForIdle ();
 } // if

 // Stop the CCE microengine by setting it to single-stepping mode

 regw (PM4_MICRO_CNTL, 0x00000000);

 // Perform a soft reset of the engine

 R128_ResetEngine ();

 // Set the Rage 128 to standard PIO mode.

 regw (PM4_BUFFER_CNTL, PM4_BUFFER_CNTL_NONPM4);

 if (CCEBMFlag)
 {
 regw (BUS_CNTL, bm_save_state);

 if (CCEAGPFlag)
 {
 // Shut down AGP

 R128_EndAGP ();
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
5-14 Proprietary and Confidential

Ring Buffer Management

to
ost

.

ing

, width,
uld

 be
 }
 else
 {
 DPMI_freedosmem (PCIGartInfo->handle);
 } // if
 } // if

 return;
} // R128_CCEEnd

5.3.3 Indirect Buffer

In addition to transferring packets through the ring buffer, the host application may
transfer them through an indirect buffer when using CCE bus-mastering mode. Similar
the ring buffer, the indirect buffer is a contiguous block of memory allocated by the h
application in AGP or PCI GART space. However, unlike the ring buffer, the indirect
buffer is linear. There are no wrapping mechanisms governing its use and operation

To view a diagram of the indirect buffer refer to Figure 5-3. on page 5-16.

The benefit of the indirect buffer is that unlike the ring buffer, it is not continuously be
overwritten as a consequence of circular wrapping. This allows relatively static and
frequently used packets to be written once and referenced multiple times. Only the
operating parameters need to be changed for each instance of use (e.g., the top, left
and height parameters of a BITBLT type-3 packet). In contrast, the same packet wo
have to be continuously copied into the ring buffer because the buffer's contents are
continuously overwritten.

The indirect buffer should be 4K page aligned.

The packet byte offset from the base of the indirect buffer is specified in the
PM4_IW_INDOFF register. The size in even number of DWORDs is specified in the
PM4_IW_INDSIZE register. If a packet's size is an odd count of DWORDs, it should
padded with a single type-2 NOP packet. Writing PM4_IW_INDSIZE initiates the packet
transfer.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 5-15

Ring Buffer Management

er
g,
he

g

The most efficient programming model for the RAGE 128 is to use both the ring buff
and the indirect buffer. The ring buffer enables concurrency and command streamin
whereas the indirect buffer reduces copying overhead for commonly used packets. T
packet transfers out of the indirect buffer may be streamed by writing PM4_IW_INDOFF
and PM4_IW_INDSIZE through a type-0 packet submitted to the ring buffer. If the rin
buffer is not used, indirect buffer transfers may still be executed by writing these two
registers through conventional PIO.

Driver(s)

RAGE 128HOST

Packet

Indirect Buffer

f ree space
AGP/PCI
Interface CCE FIFO Buf fer

PM4_IW_INDOFF

PM4_IW_INDSIZE

f ree space

Figure 5-3. The Indirect Buffer
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
5-16 Proprietary and Confidential

ples
 are

uch as
 that
l (3D)

 as:

d 3D
Chapter 6
CCE Packets

6.1 Scope
This section describes how to use the CCE packets and provides programming exam
for various engine operations (e.g. blts, rectangle and line draws, etc.). CCE packets
used to draw two-dimensional (2D) images, such as:

• Lines

• Rectangles

• Polygons

• Text

• Moving pixels

The targeted operation area is the entire CRT screen, not just a limited screen area s
a window. For all the 2D operations, this discussion will refer to a coordinate system
is based on the entire CRT screen. CCE packets are used to draw three-dimensiona
images, such as:

• Shaded or textured mapped points.

• Shaded or textured mapped line lists and strips.

• Shaded or textured mapped triangle lists, strips, and fans.

CCE packets are used to control several features associated with 3D rendering such

• Texture map states

• Z buffering

• Stencil buffering

• Alpha blending

• Alpha testing

• Fog blending

• Culling

• Dithering

Programming examples will demonstrate how to use the CCE packets to draw 2D an
images. For a detailed discussion about these packets, refer to Appendix F.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-1

2D Coordinate System

e
6.2 2D Coordinate System
The coordinate system used in 2-D operations is shown in Figure 6-1.

• x-axis points to the right.

• y-axis points downwards.

• Origin is located at the screen’s top-left corner.

• Scales are integer intervals (a coordinate represents the position of a pixel).

For any objects to be drawn on the screen, the values of the x- and y-coordinates ar
limited to positive integers. They range from zero to M-1, and from zero to N-1,
respectively.

For negative coordinates or coordinates beyond (M-1, N-1), the objects may not be
entirely drawn on the screen, but could still be drawn into frame buffer.

Screen Area

x

y

(0, 0)

(M-1, N-1)

Screen width

S
cr

ee
n

he
ig

ht

Figure 6-1. 2D Coordinate System
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-2 Proprietary and Confidential

2D Coordinate System

e
lex
 data
ixels

t.

tem

g,

e

the

ation

e
6.2.1 Essentials of 2D Drawing Operations

The term rendering describes general drawing operations to the screen or to the fram
buffer. This operation manipulates pixels from a number of sources. It is more comp
than a simple drawing operation such as drawing an object to the screen or copying
from one location to another. Rendering 2-D images actually involves manipulating p
from different sources and placing the resulting pixels at a desired location.

When rendering, three types of source pixels are manipulated, such as:

• Source pixels are taken from a location in the frame buffer or supplied by the hos
These pixels will not be modified after rendering.

• Brush are patterns are stored either in the relevant RAGE 128 registers or in sys
memory. These pixels will not be modified after rendering.

• Destination pixels are taken from the frame buffer as source data before renderin
and they will be replaced by new pixels written to their position.

Generally, pixels that participate in the pixel manipulation are called the source
components. The manipulated data is written to a location called the destination area or
destination.

In the following discussion, a destination pixel is a source component that comes from th
destination, unless specified otherwise. Rendering may involve one, two or all of the
source components. The operation that manipulates the source components will be
referred to as a raster operation (ROP). The RAGE 128 supports all 256 ROP3 raster
operations.

As rendering operations occur in a specific display mode, the program must specify
following parameters to the RAGE 128 with respect to a specified operation. These
parameters are referred to as rendering parameters. They are:

• The type of destination pixels (one of 8, 16, 24 and 32 BPP).

• If there is a source involved, the type of source pixels.

• The brush type selected for the rendering operation.

• If the brush is involved, the color of the selected brush represented in the destin
pixel type.

• The source where the source pixels will be loaded from (system memory or fram
buffer).

• The drawing order of pixels (from left to right or from right to left).
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-3

2D Coordinate System

ken

ot
umed.

fset

• If required, the source clipping rectangle that restricts the area where data are ta
from.

• If required, the destination clipping rectangle that will specify the area where the
rendering operation is carried out.

• The source offset and pitch that specify the source’s start location and pitch. If n
specified, the default offset and pitch (the screen offset and screen pitch) are ass
This is only applicable to the source loaded from frame buffer.

• The destination offset and pitch that specify the destination’s start location in the
frame buffer and pitch. If not specified, the default offset and pitch (the screen of
and screen pitch) are assumed.

• The raster operation type carried out in combining the source, brush pattern and
destination pixels.

• The location and geometry of the objects to be drawn.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-4 Proprietary and Confidential

Drawing Objects

lected

so

ed
 from

inate
 the
ges
6.3 Drawing Objects
RAGE 128 provides hardware assistance for drawing the following:

• Polylines.

• Polyscanlines.

• Rectangles.

The RAGE 128 does not support drawing the following:

• Circles.

• Ellipses.

While drawing the objects, the source pixels involved are the brush and destination
components. The source component is not involved. In this case, the brush pattern se
for drawing is considered as a source, and the pixels of the object being drawn are
considered as the destination. In addition to specifying the rendering parameters, al
specify the location and geometry of the intended object.

6.3.1 Drawing Rectangles

To draw a rectangle, specify the:

• Rendering parameters.

• Location of the rectangle.

• Geometry of the rectangles.

If the rectangle is to be filled with a pattern, specify where the source pattern is load
from for the brush. If the pattern is not stored in the brush registers, load the pattern
system memory by supplying the raster data of the pattern to the packet.

The rectangle’s location is specified by the coordinate of its left-top corner.

The rectangle’s geometry is specified by either: its height and width, or by the coord
at its bottom-right corner (from which the height and width can be calculated). When
coordinate of the rectangle’s right-bottom corner is specified, the bottom and right ed
of the rectangle will not be drawn.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-5

Drawing Objects

f the

 drawn
Figure 6-2. shows two rectangles to be drawn on the screen.

The destinational-pixel type is aRGB (one of the 16 BPP modes). The dimensions o
rectangles are specified by parameters xi, yi, wi, and hi, for i = 1, 2.

The PAINT packet can be used to draw these rectangles. Assume the rectangles are
in the clipping rectangle specified by its top-left corner (x1, y1) and bottom-right corner
(x2+w2, y2+h2) with a brush in the type of solid pen. The other parameters are similar to
those of drawing polyscanlines except that a clipping rectangle is specified.

The following programming code shows how to draw rectangles.

Example Code: Drawing rectangles
#define CCE_PACKET3_CNTL_PAINT 0xC0009100

#define DST_CLIPPING 0x00000008 // Clip the destination

#define PIXEL_TYPE_aRGB 3 // Destination pixel type

#define SOLID_PEN 13 // Brush type selected

#define BLUE_COLOR 0x1F // Colour in aRGB format

#define ROP_PAT_CPY 0xF0 // Copy the brush pattern to the dest

#define SRC_TYPE_3 3 // No difference between source and dest

#define DRAW_LEFT2RIGHT 0 // Pixels are drawn from left to right

#define CLIP_TOP 10 // Clipping rectangle parameters

#define CLIP_LEFT 20

#define CLIP_BOTTOM 300

#define CLIP_RIGHT 200

DWORD dwBuf[20];

struct {

x1

x2

y1

y2

w1

w2

h1

h2

Figure 6-2. Rectangles
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-6 Proprietary and Confidential

Drawing Objects

nts.
.

ed of
The
 WORD wLeft, wTop, wRight, wBottom;

} Rect[2]= {{20, 10, 80, 80}, {120, 10, 200, 160}};

int i = 0, j;

 // Compose the header

 dwBuf[i++] = CCE_PACKET3_CNTL_PAINT;

 // Compose GUI_CONTROL

 dwBuf[i++] = DST_CLIPPING | SOLID_PEN << 4 | PIXEL_TYPE_aRGB << 8 |

 SRC_TYPE_3 << 12| DRAW_LEFT2RIGHT << 14 | ROP_PAT_CPY << 16;

 // Data of the clipping rectangle.

 dwBuf[i++] = CLIP_LEFT | CLIP_TOP << 16;

 dwBuf[i++] = CLIP_RIGHT | CLIP_BOTTOM << 16;

 // Colour used to draw the polyline.

 dwBuf[i++] = BLUE_COLOR;

 // Fill rectangles' data

 for (j = 0; j < 2; j++)

 {

 dwBuf[i++] = rect[j].wLeft + (rect[j].wTop << 16);

 dwBuf[i++] = rect[j].wRight + (rect[j].wBottom << 16);

 } // for

 dwBuf[0] |= (i - 2) << 16; // Fill the header with packet size

 // Submit the packet to the ring buffer.

 SubmitPackets (dwBuf, i);

6.3.2 Drawing Polylines

A polyline consists of a number of line segments that are connected at their end-poi
The ending point of the first segment is the starting point of the second segment, etc
Therefore, if a polyline is composed of n line segments, it can be represented by n + 1
points.

For example, the polyline in Figure 6-3. is composed of four line segments. It may be
represented by points p1, p2, …, p5, where each pi denotes a coordinate (xi, yi) of point i on
the screen. It is obvious that a line is just a special case of polyline, which is compos
one line segment. The RAGE 128 draws a line from the start-point to the end-point.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-7

Drawing Objects

 was

E

et and

d
last point of the line may or may not be drawn (this depends on how the GUI engine
set at initialization). In Figure 6-3., the drawing of the first line segment starts at p1, and
ends at the point next to p2. The drawing of the second line segment starts at p2, and ends
at the point next to p3. The remaining lines are draw in a similar fashion. Point p1 is part of
the first line segment; point p2 is part of the second line segment, etc.

To program the RAGE 128 to draw a polyline with CCE packets, select the POLYLIN
packet and specify the following rendering parameters:

• The type of destination pixels is aRGB (one of the 16 BPP formats).

• The type of source pixels is the same as the destination.

• The brush selected is a Solid Pen.

• The color of the brush is Black.

• No source data is involved.

• The pixels are drawn from left to right.

• The source-clipping rectangle is not applicable.

• The destination clipping rectangle is specified by its top-left corner (10,10) and
bottom-right corner (600,400).

• The source offset and pitch are not applicable, and therefore use the default offs
pitch.

• The destination offset and pitch are the screen offset and pitch (default offset an
pitch).

• The raster operation type is copying the brush pattern to the destination.

• The location and geometry of the object are specified by points p1, p2, …, p5.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-8 Proprietary and Confidential

Drawing Objects
Example Code: Drawing a polyline
#define CCE_PACKET3_CNTL_POLYLINE 0xC0009500

#define DST_CLIPPING 0x00000008 // Clip the destination

#define PIXEL_TYPE_aRGB 3 // Destination pixel type

#define SOLID_PEN 13 // Brush type selected

#define BLACK_COLOR 0 // Colour in aRGB format

#define CLIP_TOP 10 // Clipping rectangle parameters

#define CLIP_LEFT 10

#define CLIP_BOTTOM 400

#define CLIP_RIGHT 600

#define ROP_PAT_CPY 0xF0 // Copy brush pattern to destination

#define SRC_TYPE_3 3 // No difference between source and dest

#define DRAW_LEFT2RIGHT 0 // Pixels are drawn from left to right

extern WORD SubmitPackets (DWORD *ClientBuf, DWORD dwDataSize);

DWORD dwBuf[20];

struct {

 int x, y;

} points[5] = {{10, 25}, {45, 57}, {156, 200}, {87, 260}, {160, 300}};

int i=0, j;

 // Compose the header

 dwBuf[i++]= CCE_PACKET3_CNTL_POLYLINE;

 // Compose GUI_CONTROL

 dwBuf[i++]=DST_CLIPPING |SOLID_PEN << 4 | PIXEL_TYPE_aRGB << 8 |

 SRC_TYPE_3 << 12| DRAW_LEFT2RIGHT <<14 | ROP_PAT_CPY <<16;

 // Data of the clipping rectangle.

p1

p2

p3

p4

p5

Figure 6-3. Polyline
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-9

Drawing Objects

y its:

ness
eir
 dwBuf[i++]= CLIP_LEFT | CLIP_TOP << 16;

 dwBuf[i++]= CLIP_RIGHT | CLIP_BOTTOM << 16;

 // Colour used to draw the polyline.

 dwBuf[i++]= BLACK_COLOR;

 // Fill points' data

 for (j = 0; j < 5; j++)

 {

 dwBuf[i++]= points[j].x + (points[j].y << 16);

 } // for

 // Fill packet size into the packet header.

 dwBuf[0] |= (i - 2) << 16;

 // Submit the packet to the ring buffer.

 SubmitPackets (dwBuf, i);
 SubmitPackets (dwBuf, i);

6.3.3 Drawing Polyscanlines

A polyscanline is composed of a number of horizontal line segments. It is specified b

• Vertical position, yi

• Line thickness, hi (measured in number of pixels)

• Start-end positions of its segments (xij , xij+1) for j = 0, 2, …, 2n where ni denotes the
number of segments of the i-th polyscanline

Figure 6-4. shows three polyscanlines. The first consists of three segments with thick
h1. The second and third consist of two segments and one segment, respectively (th
thickness h2 and h3 are omitted from the figure).
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-10 Proprietary and Confidential

Drawing Objects

raw

et and

d

ters:
Assuming that the polyscanlines in Figure 6-4. are drawn completely without being
clipped, in Blue of the 16 BPP format, select the CCE packet POLYSCANLINES to d
these images. Specify the related rendering parameters as follows:

• The type of destination pixels is aRGB (one of the 16 BPP format).

• The type of source pixels is the same as the destination.

• The brush selected is a Solid Pen.

• The color of the brush is Blue.

• No source data involved.

• The pixels are drawn from left to right.

• The source-clipping rectangle is not applicable.

• The destination-clipping rectangle is not specified.

• The source offset and pitch are not applicable, and therefore use the default offs
pitch.

• The destination offset and pitch are the screen offset and pitch (default offset an
pitch).

• The raster operation type is copying the brush pattern to the destination.

• The location and geometry of the scanlines are specified by the following parame

• y1 = 80, h1 = 3, x11= 100, x12= 150, x13= 170, x14= 230, x15= 250, x16= 300

• y2 = 100, h2 = 2, x21= 80, x22= 160, x23= 200, x24= 290

x11 x12 x13 x14 x15 x16

x21 x22 x23 x24

x31 x32

h1

h2

h3

y1

y2

y3

Figure 6-4. Polyscanlines
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-11

Drawing Objects
• y3 = 120, h3 = 1, x31= 60, x32= 330

Example Code: Drawing polyscanlines
#define CCE_PACKET3_CNTL_POLYSCANLINES 0xC0009800

#define PIXEL_TYPE_aRGB 3 // Destination pixel type

#define SOLID_PEN 13 // Brush type selected

#define BLUE_COLOR 0x1F // Colour in aRGB format

#define ROP_PAT_CPY 0xF0 // Copy brush pattern to destination

#define SRC_TYPE_3 3 // No difference between source and dest

#define DRAW_LEFT2RIGHT 0 // Pixels are drawn from left to right

DWORD dwBuf[20];

WORD line1[] = {100, 150, 170, 230, 250, 300};

WORD line2[] = {80, 160, 200, 290};

WORD line3[] = {60, 330};

struct _polyscnline{

 DWORD numSegments;

 WORD wTop,wHeight;

 WORD *line;

} polyscnline[3] = {{3,80,3,line1}, {2,100,2,line2}, {1,120,1,line3}};

int i = 0, j, k;

 // Compose the header

 dwBuf[i++] = CCE_PACKET3_CNTL_POLYSCANLINES;

 // Compose GUI_CONTROL

 dwBuf[i++] = SOLID_PEN << 4 | PIXEL_TYPE_aRGB << 8 |

 SRC_TYPE_3 << 12| DRAW_LEFT2RIGHT <<14 | ROP_PAT_CPY <<16;

 // Colour used to draw the polyscanlines.

 dwBuf[i++] = BLUE_COLOR;

 dwBuf[i++] = 3; // Number of subpackets

 for (j = 0; j < 3; j++)

 {

 // Fill subpacket

 dwBuf[i++] = polyscnline[j].numSegments;

 dwBuf[i++] = polyscnline[j].wTop + (polyscnline[j].wHeight << 16);

 for (k = 0; k < 2*polyscnline[j].numSegments; k += 2)

 {

 dwBuf[i++] = polyscnline[j].line[k] +

 (polyscnline[j].line[k+1] << 16);

 } // for

 } // for

 dwBuf[0] = CCE_PACKET3_CNTL_POLYSCANLINES | ((i-2) << 16);

 // Submit the packet to the ring buffer.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-12 Proprietary and Confidential

Drawing Objects
 SubmitPackets (dwBuf, i);
 SubmitPackets (dwBuf, i);
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-13

Block Transfers

fer
the

on

n. If

y the

block
ents.
 before
ed as
urce

 from

ion
d by a
rush
ion.

e data
6.4 Block Transfers
The RAGE 128 provides hardware support for transferring data within the frame buf
(from one location to another), and for transferring data from the system memory to
frame buffer.

The location where the data is taken from is referred to as the source, and the locati
where the data is transferred to is referred to as the destination. The size of the data
transfer determines the size of a rectangular area on the screen. In this sense, Block
Transfer means copying pixels from one place to another with some pixel manipulatio
a data transfer from system memory to frame buffer is required, the host must suppl
raster data as part of a CCE packet.

Three types of pixels (source, destination, and brush pattern) may get involved in a
transfer. The resulting destination is the combination of one, two, or all three compon
In this sense, all three components are considered as the components of the source
the operation that combines them, and only the result of the combination is consider
the destination. In a block data transfer, specify the location and dimension of the so
and destination in addition to the setup parameters.

The following three types of data transfer may occur:

• BitBlt , also known as source copy, where the content of the source is copied to the
destination without any changes of its dimensions.

• Scaled BitBlt where the source is stretched or compressed in the process of data
transfer and fitted into the destination dimensions.

• Transparent Scaled BitBlt is a transfer that is similar to Scaled BitBlt except that it
makes the background image at the destination shown through the image copied
the source as if the source image is transparent.

6.4.1 Bit Block Transfer

BitBlt operation transfers pixels from a source rectangle to a destination. The dimens
of the transferred rectangle remains the same as the source. The transfer is controlle
ternary-raster operation code that specifies how the pixels from the source and the b
pattern are mixed with those of the destination to form the final pixels at the destinat

The RAGE 128 supports:

• Normal data transfer (i.e., the data transfer that does not change the format of th
taken from the source before placing it at the destination).
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-14 Proprietary and Confidential

Block Transfers

 128
he

he
• Monochrome to color expansion when transferring a monochrome bitmap to the
screen.

For color expansion, specify the bitmap’s foreground and background colors. RAGE
will convert the white bit (‘1’) to the foreground color of the corresponding pixel and t
black bit (‘0’) to the background color.

To copy the screen area named Source to the area named Destination in Figure 6-5. It is
obvious that the pixel types for the source and the destination are the same, say in t
aRGB format.

If the resulting destination matches the source, choose the CCE packet BLTBLT to
perform the operation.

Specify the following parameters:

• The type of the destination pixels is aRGB.

• The type of the source pixels is the same as the destination.

• No brush is selected.

• The color of the brush is not applicable.

x1

x2

y1

y2

w

hSource

w

hDestination

Figure 6-5. Copy an Image from Source to Destination
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-15

Block Transfers

r.

nsfer.

g
es and
nd pitch
• The source pixels are loaded from the video memory.

• The pixels are drawn from left to right.

• The source-clipping rectangle is not applicable.

• No destination-clipping rectangle is required.

• Use the default source pitch and offset as this is a screen-to-screen data transfe

• Use the default destination pitch and offset as this is a screen-to-screen data tra

• The raster operation type is Source Copy (code 0xCC).

• The location and dimension of the source and destination are (x1, y1), (h, w) and
(x2, y2), (h, w), respectively, as shown in Figure 6-5.

Example Code: Copying an image from a source to a destination
#define CCE_PACKET3_CNTL_BITBLT_MULTI 0xC0009B00

#define PIXEL_TYPE_aRGB 3 // Destination pixel type

#define NO_BRUSH 15 // Brush type selected

#define LD_FRM_VRAM 2 // Source is loaded from the VRAM

#define ROP_SRCCOPY 0xCC // Copy the source to the destination

#define SRC_TYPE_3 3 // No difference between source and dest

#define DRAW_LEFT2RIGHT 0 // Pixels are drawn from left to right

DWORD dwBuf[20];

int x1 = 20, y1 = 40, h = 50, w = 80, x2 = 120, y2 = 200;

int I = 0;

 // Compose the header

 dwBuf[i++] = CCE_PACKET3_CNTL_BITBLT_MULTI;

 // Compose GUI_CONTROL

 dwBuf[i++] = NO_BRUSH << 4 | PIXEL_TYPE_aRGB << 8 |

 SRC_TYPE_3 << 12| DRAW_LEFT2RIGHT << 14 | ROP_SRCCOPY << 16

|

 LD_FRM_VRAM << 24;

 // Fill rectangles' data

 dwBuf[i++] = y1 | (x1 << 16); // Source location

 dwBuf[i++] = y2 | (x2 << 16); // destination location

 dwBuf[i++] = h | (w << 16); // dimensions of copied area

 // Submit the packet to the ring buffer.

 dwBuf[0] |= (i - 2) << 16; // Add packet size to header

 SubmitPackets (dwBuf, i);

The above code can be extended to copy a number of source areas to correspondin
destinations respectively, provided that all the source areas share the same properti
so do the destination areas. For example, the source areas refer to the same offset a
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-16 Proprietary and Confidential

Block Transfers

n, as

al to
l will
urce,
.g.,
 more

or

ster

olor

ource

n to
as the starting memory address and the memory size of a scanline across the scree
well as the destinations. In other words, the settings specified for the field
GUI_CONTROL should be applicable to all the block transfers.

6.4.2 Transparent Bit Block Transfer

The Transparent Bit Block Transfer is also known as Transparent BitBlt. This operation
conditionally copies pixels from the source to the destination with reference to a
designated (reference) color (e.g., the background color). If the color of a pixel is equ
(or not equal to according to the comparison criterion), the designated color, the pixe
not be copied to the destination. This operation filters out unwanted color from the so
and is very useful in copying odd-shaped objects onto a background with patterns (e
games), making the objects look transparent. Since a transparent BitBlt operation is
complicated than a BitBlt operation, the following discussion will clarify some
terminology before proceeding with an example.

The source means a color pixel, which may come from one of the following sources:

• One of foreground or background colors used to expand a mono bitmap to a col
bitmap

• A color pixel from either the frame buffer or the host memory

• A color pixel of a specific color pattern (brush).

The source pixel may be combined with the destination pixel according to a given ra
operation code (e.g., the AND operation), resulting the combined source pixel. To prevent
certain colors of combined source pixels from being written to the destination, two c
comparators are used for deciding whether to write a combined source pixel to the
destination or to keep the original destination pixel. The comparators compare the s
and destination pixels respectively against their reference colors (the source and
destination references), and decide whether the combined source pixel can be writte
the destination. The following is a number of strategies for making such a decision:

Table 6-1 Source Comparator

Decision
Code Description

0
Combined pixels are always written to the destination (i.e., no comparison is
performed).
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-17

Block Transfers

led. If
en the
 pixel
The two tables give the decision strategy whenever either of the comparators is enab
both comparators are enabled, the final decision will depend on the agreement betwe
two decisions made separately. If both comparators decide that the combined source
should be written to the destination, the destination will be updated with the pixel.
Otherwise, the original destination pixel is preserved.

1
No combined pixel is written to the destination, i.e. the destination pixel is
unchanged.

4
The combined pixel is written to the destination if the color of the source pixel is
equal to its reference color. Otherwise, the destination pixel is unchanged.

5
The combined pixel is written to the destination if the color of the source pixel is
NOT equal to its reference color. Otherwise, the destination pixel is unchanged.

7

Only the source pixels whose color is equal to the reference color will be XORed
with the foreground color of a mono bitmap, and then written to the destination.
That is, destPixel = srcPixel XOR foregroundColor if srcPixel is equal to the
foreground color of a monochrome bitmap, specifically text. This is referred to as
flipping sometimes.

Table 6-2 Destination Comparator

Decision
Code Description

0
Combined pixels are always written to the destination (i.e., no comparison is
performed).

1
No combined pixel is written to the destination, i.e. the destination pixel is
unchanged.

4
The destination is unchanged if the color of the destination pixel is equal to its
reference color. Otherwise, the combined source pixel are written to the
destination.

5
The destination is unchanged if the color of the destination pixel is NOT equal to
its reference color. Otherwise, the combined source pixel are written to the
destination.

Table 6-1 Source Comparator (Continued)

Decision
Code Description
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-18 Proprietary and Confidential

Block Transfers

d
ata

de is

fore,
data
To perform a transparent BitBlt, as shown in Figure 6-6., the source area is the top-left
rectangle, and the destination area is the bottom-right rectangle.

In the data transfer, remove the background pattern of the source and allow the wor
Source to be copied. Therefore, the pattern of the destination is preserved after the d
transfer. Assume the text color is blue at the source, which is the desired color at the
destination.

For this operation, select the CCE packet TRANS_BITBLT. The rendering parameters for
this operation are the same as previous example, and are omitted here.

The combined source pixel will be the same as the source as the raster operation co
called Source Copy (SRCCOPY). Supply data for fields CLR_CMP_CNTL,
SRC_REF_CLR, and DST_REF_CLR. As this operation only needs to compare the
source pixels with the reference color, only the source comparator is enabled. There
the destination reference color is not required. However, always supply this dummy
to the packet to satisfy its format requirement.

Example Code: Transparent BitBlt
#define CCE_PACKET3_CNTL_TRANS_SCALING 0xC0009700

#define PIXEL_TYPE_aRGB 3 // Destination pixel type

#define NO_BRUSH 15 // Brush type selected

#define LD_FRM_VRAM 2 // Source is loaded from the VRAM

#define ROP_SRCCOPY 0xCC // Copy the source to the destination

x1

x2

y1

y2

w

hSource

w

hSource

Destination area

Figure 6-6. Transparent Bit-Block Transfer
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-19

Block Transfers

rocess
gle is
#define SRC_TYPE_3 3 // No difference between source and dest

#define DRAW_LEFT2RIGHT 0 // Pixels are drawn from left to right

#define PACKET_SIZE 8 // Packet size including header

#define SRC_REF_COLOR 0x1F // source reference

#define CLR_CMP_SRC 4 // Pixels equal to reference get to dest

#define CMP_ENABLE 1 // Enable source comparator

DWORD dwBuf[20];

int x1 = 20, y1 = 40, h2 = 100, w2 = 80, x2 = 120, y2 = 200;

int sx = 0x0C00; // Representation of 3/4 (see Appendix B for details)

int sy = 0x0800; // Representation of 1/2 (see Appendix B for details)

int i = 0;

 // Compose the header

 dwBuf[i++] = CCE_PACKET3_CNTL_TRANS_SCALING;

 // Compose GUI_CONTROL

 dwBuf[i++] = NO_BRUSH << 4 | PIXEL_TYPE_aRGB << 8 |

 SRC_TYPE_3 << 12 | DRAW_LEFT2RIGHT << 14 |

 ROP_SRCCOPY << 16 | LD_FRM_VRAM << 24 ;

 dwBuf[i++] = CLR_CMP_SRC | CMP_ENABLE << 24;

 dwBuf[i++] = SRC_REF_COLOR;

 dwBuf[i++] = 0; // dummy destination reference

 // Fill rectangles' data

 dwBuf[i++] = x1 | (y1 << 16); // Source location

 dwBuf[i++] = x2 | (y2 << 16); // destination location

 dwBuf[i++] = w2 | (h2 << 16); // dimensions of destination area

 dwBuf[0] | = (i-2) << 16; // Add packet size to header

 // Submit the packet to the ring buffer.
 SubmitPackets (dwBuf, i);

6.4.3 Scaled Block Transfer

The Scaled Block Transfer is a way to copy a block of pixels from the source to the
destination while scaling the dimensions of the source to fit in the dimensions of the
destination. In other words, the source rectangle is stretched or compressed in the p
of copying according to the specified destination dimensions, and the resulting rectan
placed at the location of the destination.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-20 Proprietary and Confidential

Block Transfers

ify
sed to

are
In a scaled data transfer, the source is specified by its top-left corner coordinate (x1, y1) and
height and width (h1, w1). The destination is specified by (x2, y2) and (h2, w2).

The scaling factors between the source and destination may be defined as:

• Sx = w1/w2

• sx is the factor in the x-direction

• Sy = h1/h2

• sy is the factor in the y-direction.

One of parameters w1, w2 and sx is dependent on the other two. Use two of them to spec
the horizontal dimensions of the source and destination. The same method can be u
specify the vertical dimensions of the source and destination.

The following example uses (x1, y1), (x2, y2), (sx, w2) and (sy, h2) to specify the locations
and dimensions of the source and destination. Assuming x1 = 20, y1 = 40, h1 = 50, w1 = 60,
x2 = 120, y2 = 200, h2 = 100, w2 = 80, then sx = ¾ and sy = ½.

It is obvious that packet SCALE is suitable for this operation. The setup parameters
the same as those given in the example of the previous section.

There are two types of scaled block transfer:

x1

x2

y1

y2

w1

w2

h1

h2

Source

Destination

Figure 6-7. Scaled Image Transfer
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-21

Block Transfers

terms
 case
nd
nvert

in and

PP for

 the
• Mapping a texture (bitmap) onto a screen area.

• Transfer a block of data from one screen area to anther as shown in Figure 6-6.

Both types of transfer require the user to specify for the packet the source location in
of memory offset, and the vertical advance step of the source in terms of pitch. In the
of texture mapping, the memory offset points to the texture location in frame buffer a
the pitch is set to the pitch of the texture. In the case of screen-to-screen transfer, co
the x- and y-coordinates of the source image to the memory offset to the screen orig
to indicate the pitch of the screen.

It is assumed that the display mode is set to 800x600 for screen resolution and 16 B
color. For this display mode:

• Each pixel is represented by 2 bytes.

• Each scanline of the screen is represented by 2x800 bytes.

• Screen pitch is 100.

Assuming the screen origin is at address 0 of the frame buffer, the memory offset of
source is determined by:

• offset = 1600y1 + 2x1

Example Code: Copying an image from the source to the destination with scaling
#define CCE_PACKET3_CNTL_SCALING 0xC0009600

#define PIXEL_TYPE_aRGB 3 // Destination pixel type

#define NO_BRUSH 15 // Brush type selected

#define LD_FRM_VRAM 2 // Source is loaded from the VRAM

#define ROP_SRCCOPY 0x0CC // Copy the source to the destination

#define SRC_TYPE_3 3 // No difference between source and dest

#define DRAW_LEFT2RIGHT 0 // Pixels are drawn from left to right

#define SCREEN_PITCH 100

DWORD dwBuf[20];

int x1 = 20, y1 = 40, h2 = 100, w2 = 80, x2 = 120, y2 = 200;

int sx = 0x0C00; // Representation of 3/4 (see Appendix B for details)

int sy = 0x0800; // Representation of 1/2 (see Appendix B for details)

int i = 0, j;

 // Compose the header

 dwBuf[i++] = CCE_PACKET3_CNTL_SCALING;
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-22 Proprietary and Confidential

Block Transfers
 // Compose GUI_CONTROL

 dwBuf[i++] = NO_BRUSH << 4 | PIXEL_TYPE_aRGB << 8 |

 SRC_TYPE_3 << 12 | DRAW_LEFT2RIGHT << 14 |

 ROP_SRCCOPY << 16 | LD_FRM_VRAM << 24;

 dwBuf[i++] = 0; // disable 3D operations

 dwBuf[i++] = 0; // disable lighting

 dwBuf[i++] = 0; // disable texture mapping

 dwBuf[i++] = PIXEL_TYPE_aRGB; // set pixel type for source

 // Fill rectangles' data

 dwBuf[i++] = x1*2+y1*SCREEN_PITCH*2*8; // Mem offset of source

 dwBuf[i++] = SCREEN_PITCH; // screen pitch

 dwBuf[i++] = sx; // Scaling factor in x-direction

 dwBuf[i++] = sy; // Scaling factor in y-direction

 dwBuf[i++] = y2 | (x2 << 16); // destination location

 dwBuf[i++] = w2 | (h2 << 16); // dimensions of destination area

 dwBuf[0] | = (i - 2) << 16;

 // Submit the packet to the ring buffer.
 SubmitPackets (dwBuf, i);

6.4.4 Transparent Scaled Block Transfer

This packet combines the capabilities of both transparent BitBlts and scaled BitBlts.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-23

Drawing Text

itmap.
t of

the

ueue.

of an
 cell
laced
all the
he
its of
6.5 Drawing Text
Text is composed of a number of words which in turn is composed of characters. A
character is represented by its raster image, and normally stored as a monochrome b
RAGE 128 supports printing characters whose raster images are stored in the forma
bit-packed monochrome bitmaps. This format is illustrated by the example shown in
Figure 6-8.

In this figure, the raster images of characters ‘b’, ‘o’ and ‘y’ are represented by 4×8, 4×5
and 6×9 arrays, respectively. Each cell of array is represented by a bit. If the cells in
array are scanned from left to right and top to bottom, and each cell is marked with a
ordinal number according to its precedence in the scanning, the cells would form a q

The first eight cells (bits) are taken from the queue and are placed into the first byte
array (referred to as the bitmap). The first cell is at the most significant bit and the 8th
is at the least significant bit. Then, the next eight cells are taken from the queue and p
into the second byte of the bitmap in a same manner. This process is repeated until
cells in the queue are taken out and placed into the bitmap. It is not necessary that t
number of cells in an array must be a multiple of eight. This means that remaining b

(0, 0) x

y

∆x1

BAS_X

∆x2 ∆x3

∆y1

∆y2

∆y3

B
A

S
_Y W1

H1

H2

H3

W2 W3

Figure 6-8. Parameters of Text
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-24 Proprietary and Confidential

Drawing Text

me

, the

his

 For

nt the

ored
 byte.

s
the last byte in the bitmap are undefined, and normally filled with 0’s. The monochro
bitmap created in this manner is said to be in the bit-packed format.

If the black cells in the arrays are coded as 1’s, and the white cells are coded as 0’s
bit-packed codes for the raster images of characters in this example will be:

• 0x88, 0x8E, 0x99 and 0x9E for character ‘b’.

• 0x69, 0x99 and 0x60 for ‘o’.

• 0x45, 0x16, 0x0CA, 0x38, 0x43, 0x18 and 0x0C0 for ‘y’.

To print the word “boy”, specify the reference location of the text. For this example, t
reference location is given by coordinates (bas_x, bas_y). In addition, specify the space
between two adjacent bitmaps. These are denoted as ∆xi and ∆yi. Note that the values of
∆xi and ∆yi can be negative as they stand for deviations from a reference coordinate.
the case of Figure 6-8. these parameters are:

• H1 = 8, W1 = 4, ∆x1 = 0, and ∆y1 = 8

• H2 = 5, W2 = 4, ∆x2 = 6, and ∆y2 = 5

• H3 = 9, W3 = 6, ∆x3 = 5, and ∆y3 = 5

The bitmap of a character may be categorized into two types: Large Glyph or Small Glyph
according to its size. The difference between the two is the data type used to represe
location, dimensions, and the bitmap size of a category. This will be shown in the
following description.

6.5.1 Drawing Text in Small Font

When both the height and width of a bitmap are limited to 255 pixels, the bitmap is st
in the format of Small Glyph. Therefore, each dimension can be represented by one
Now, use the packet SMALL_TEXT to print the text in Figure 6-8. on the screen with the
following setup parameters:

• The type of the destination pixels is aRGB.

• The type of the source pixels is monochrome with the foreground color defined a
Black (background color is the destination pixel color).

• No brush is selected.

• The color of the brush is not applicable.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-25

Drawing Text

h the
• The source pixels are loaded from the host system memory (the data comes wit
packet).

• The pixels are drawn from left to right.

• The source-clipping rectangle is not applicable.

• The destination-clipping rectangle is required.

• Use the default source pitch and offset.

• Use the default destination pitch and offset.

• The raster operation type is Source Copy (code 0xCC).

• The location and dimension of the source and destination are given above.

Example Code: Drawing text in small font
#define CCE_PACKET3_CNTL_SMALLTEXT 0xC0009300

#define PIXEL_TYPE_aRGB 3 // Destination pixel type

#define SRC_TYPE_1 1 // Mono bitmap with foreground colour

#define NO_BRUSH 15 // Brush type selected

#define LD_FRM_HOST 3 // Source is loaded from the host

#define DRAW_LEFT2RIGHT 0 // Pixels are drawn from left to right

#define DST_CLIPPING 0x00000008 // Clip the destination

#define ROP_SRCCOPY 0xCC // Copy the source to the destination

#define PACKET_SIZE 4 // Actual size is 6 including header

#define CLIP_TOP 10 // Clipping rectangle parameters

#define CLIP_LEFT 20

#define CLIP_BOTTOM 300

#define CLIP_RIGHT 200

#define FRGD_COLOR 0 // Black

#define BAS_X 100 // starting location of the text (x)

#define BAS_Y 150 // starting location of the text (y)

// Define raster data for each character

DWORD Raster_B = 0x9E998E88;

DWORD Raster_O = 0x00609969;

DWORD Raster_Y[2] = {0x38CA1645, 0x00C01843};

DWORD dwBuf[20];

typedef struct {

 char delta_x, delta_y;

 BYTE width, height;

 WORD nPixels;

 DWORD *RastImg;

} SMALLBITGLYPH;

SMALLGLYPH text[3] = {

 {0, 8, 4, 8, 32, &Raster_B},
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-26 Proprietary and Confidential

Drawing Text

d the
map

nd
 {6, 5, 4, 5, 20, &Raster_O},

 {5, 5, 6, 9, 54, Raster_Y}};

int i, j, m, n, PacketSize = 0;

 // Compose the header

 dwBuf[0] = CCE_PACKET3_CNTL_SMALLTEXT;

 // Compose GUI_CONTROL

 dwBuf[1] = DST_CLIPPING | NO_BRUSH << 4 | PIXEL_TYPE_aRGB << 8 |

 SRC_TYPE_1 << 12 | DRAW_LEFT2RIGHT << 14 | ROP_SRCCOPY << 16|

 LD_FRM_HOST1 << 24;

 // set up the destination clipping rectangle

 dwBuf[2] = CLIP_LEFT | CLIP_TOP << 16;

 dwBuf[3] = CLIP_RIGHT | CLIP_BOTTOM << 16;

 dwBuf[4] = FRGD_COLOR; // Foreground clour

 dwBuf[5] = BAS_X | (BAS_Y <<16); // starting location of the text

 m = 6;

 PacketSize = m;

 // Fill raster data for each character

 for (i = 0; i < 3; i++)

 {

 n = (text[i].nPixels + 31)/32;

 PacketSize += n + 1;

 dwBuf[m++] = text[i].delta_x | text[i].delta_y << 8 |

 text[i].width << 16 | text[i].height << 24;

 for (j = 0; j < n; j++)

 {

 dwBuf[m++] = text[i].RastImg[j];

 } // for

 } // for

 dwBuf[0] |= PacketSize - 2 << 16; // put the packet size into header

 // Submit the packet to the ring buffer.
 SubmitPackets (dwBuf, PacketSize);

6.5.2 Drawing Text in Large Font

The format Large Glyph is defined for the bitmap whose height and width may excee
limit of 255 pixels but are less than 65,535 pixels. The height and width of such a bit
can be represented by 2 bytes (i.e., a 16-bit word).

Use packet HOSTDATA_BLT to print the text in Figure 6-8. The parameter representation
of this packet is slightly different from packet SMALL_TEXT in that it requires the
coordinate of the left-top corner of each character, instead of the coordinate of text a
delta values of each character.

The setup parameters for this drawing is the same as those in refer to “Drawing Text in
Small Font” on page 6-25, except for the raster operation code which is SRCAND (source
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-27

Drawing Text

es
AND destination) instead of SRCCOPY (source copy), and the source type which requir
both the foreground and background colors to be supplied in the packet.

Example Code: Drawing text in large font
#define CCE_PACKET3_CNTL_HOSTDATA_BLT 0xC0009400

#define PIXEL_TYPE_aRGB 3 // Destination pixel type

#define SRC_TYPE_0 0 // Mono bitmap with foreground and

 // background colors defined

#define NO_BRUSH 15 // Brush type selected

#define LD_FRM_HOST 3 // Source is loaded from the host

#define DRAW_LEFT2RIGHT 0 // Pixels are drawn from left to right

#define DST_CLIPPING 0x00000008 // Clip the destination

#define ROP_SRCAND 0x88 // Source AND Destination (transparent)

#define PACKET_SIZE 4 // actual size is 6 including header

#define CLIP_TOP 10 // Clipping rectangle parameters

#define CLIP_LEFT 20

#define CLIP_BOTTOM 300

#define CLIP_RIGHT 200

#define FRGD_COLOR 0 // Black

#define BKGD_COLOR 0x7C00 // Red

#define BAS_X 100 // starting location of the text (x)

#define BAS_Y 150 // starting location of the text (y)

// Define raster data for each character

DWORD Raster_B = 0x9E998E88;

DWORD Raster_O = 0x00609969;

DWORD Raster_Y[2] = {0x38CA1645, 0x00C01843};

DWORD dwBuf[20];

typedef struct {

 WORD x, y;

 WORD width, height;

 DWORD nPixels;

 DWORD *RastImg;

} LARGEBITGLYPH;

LARGEGLYPH text[3] = {

 {100, 142, 4, 8, 32, &Raster_B},

 {106, 145, 4, 5, 20, &Raster_O},

 {111, 145, 6, 9, 54, Raster_Y}};

int i = 0, j, k, n;

 // Compose the header

 dwBuf[i++] = CCE_PACKET3_CNTL_HOSTDATA_BLT;

 // Compose GUI_CONTROL

 dwBuf[i++] = DST_CLIPPING | NO_BRUSH << 4 | PIXEL_TYPE_aRGB << 8 |
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-28 Proprietary and Confidential

Drawing Text
 SRC_TYPE_0 << 12 | DRAW_LEFT2RIGHT << 14 | ROP_SRCAND << 16

|

 LD_FRM_HOST1 << 24;

 // set up the destination clipping rectangle

 dwBuf[i++] = CLIP_LEFT | CLIP_TOP << 16;

 dwBuf[i++] = CLIP_RIGHT | CLIP_BOTTOM << 16;

 dwBuf[i++] = FRGD_COLOR; // Foreground clour

 dwBuf[i++] = BKGD_COLOR; // Foreground clour

 // Fill raster data for each character

 for (j = 0; j < 3; j++)

 {

 // starting location of the text

 dwBuf[i++] = text[j].x | text[j].y << 16;

 dwBuf[i++] = text[j].width | text[j].height <<16;

 n = (text[j].nPixels + 31)/32; // get size of raster image

 dwBuf[i++] = n;

 for (k = 0; k < n; k++)

 {

 dwBuf[i++] = text[j].RastImg[k];

 } // for

 } // for

 dwBuf[0] |= (i - 2) << 16; // put the packet size into header

 // Submit the packet to the ring buffer.
 SubmitPackets (dwBuf, i);
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-29

3D Rendering

cus

sters
6.6 3D Rendering
This section describes how to draw 3D primitives and set 3D rendering states on the
RAGE 128 by using CCE command packets. It is assumed you are familiar with 3D
rendering concepts, so this text will not present an in-depth tutorial. Instead, it will fo
on the implementation details.

6.6.1 Setting Up the 3D Context

Prior to performing any 3D operations, configure the RAGE 128 into a predefined 3D
context. This entails:

1. Enable the 3D operation on the RAGE 128. If this step is not taken, many 3D regi
will not be writeable.

• To enable 3D operation, set the
MISC_3D_STATE_CNTL_REG:SCALE_3D_FN field to ‘2’.

2. Set a default set of 3D rendering states.

Once 3D operation has been enabled, individual 3D rendering states may be set as
described in the section called: Setting 3D Render States.

An example of how to set the 3D context may be found in the file cntx3d.c in the
CHAP6\3D\UTIL directory of the RAGE 128 DDK.

6.6.2 Drawing 3D Primitives

There are two Type-3 packets for drawing 3D primitives. Both render the following:

• Points.

• Independent lines (line lists).

• Polylines (line strips).

• Independent triangles (triangle lists).

• Triangle fans.

• Triangle strips.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-30 Proprietary and Confidential

3D Rendering

stered

d
ce or

er
ing

y of

er.

tinct

The first packet, 3D_RNDR_GEN_RPIM, includes vertex data as part of the information
body. The vertex data is copied into the ring buffer as part of the packet and bus ma
to the CCE FIFO buffer.

The second packet, 3D_RNDR_GEN_INDX_PRIM, requires that the vertex data be place
in a dedicated buffer (called the vertex buffer) that is allocated either in the AGP spa
the PCI GART space. For more details about PCI GART space, refer to “RAGE 128 PCI
GART” on page 2-23. This method of rendering employs the RAGE 128's vertex walk
mechanism. There are two ways to consume vertices from the vertex buffer when us
the vertex walker:

• Specify the order of vertices through an index list provided in the information bod
the 3D_RNDR_GEN_INDX_PRIM packet. This allows vertices to be accessed in
random order and to be used for more than one primitive without duplication.

• Consume vertices in sequential order from a specified location in the vertex buff
This obviates the need for an index list in the information body of the packet.

Prior to using the vertex walker, the 192 entry CCE FIFO must be split into three dis
regions:

• 64 DWORDS for CCE command packet data.

• 64 DWORDS for vertex buffer data.

• 64 DWORDS for indirect bus-mastering data.

There are ten options for this field. Only the following three options are used with the
vertex walker. The PM4_BUFFER_CNTL is usually written to when the CCE mode is
initialized.

There are three options for setting the
PM4_BUFFER_CNTL: PM4_BUFFER_CNTL_FIFO_MODE field:

Option 1: Write ‘7’ to set the following configurations:

• 64 CCE packet PIO

• 64 Vertex Cache BM

• 64 Indirect BM.

Option 2: Write ‘8’ to set the following configurations:
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-31

3D Rendering

f the

bus

he
y
• 64 CCE packet BM

• 64 Vertex Cache BM

• 64 Indirect BM.

Option 3: Write ‘15’ to set the following configurations:

• 64 CCE packet PIO

• 64 Vertex Cache PIO

• 64 Indirect PIO.

For example, selecting 64 DWORD CCE packet PIO means only 64 DWORDs out o
192 DWORDs of the CCE FIFO will be used for CCE packets. 64 out of the 192
DWORDS will be used for vertex data and the remaining 64 will be used for indirect
mastering. Therefore, these terms represent how you want the FIFO configured.

• PIO refers to Programmed I/O.

• BM refers to Bus-Mastered.

Vertex Format
The RAGE 128 supports flexible vertex formats. This allows an application to tailor t
vertex format according to its specific requirements. The vertex format is specified b
setting the appropriate bits in the VC_FORMAT field of the primitive packet.

Drawing a Triangle List using the 3D_RNDR_GEN_PRIM Packet
The 3D_RNDR_GEN_PRIM packet is described in depth in Appendix F. The packet
consists of the following:

• HEADER field describing the kind of packet.

• VC_FORMAT field describing the vertex data block structure.

• VC_CNTL field describing the type of primitive to draw.

• A vertex array or vertex list of vertex data blocks.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-32 Proprietary and Confidential

3D Rendering
Example Code: Setting up a packet to draw an independent triangle
#define CCE_PACKET3_3D_RNDR_GEN_PRIM 0xC0002500

#define CCE_VC_CNTL_PRIM_TYPE_TRI_LIST0x00000004

#define CCE_VC_CNTL_PRIM_WALK_RING 0x00000030

#define CCE_VC_FRMT_RHW 0x00000001

#define CCE_VC_FRMT_DIFFUSE_ARGB 0x00000008

#define CCE_VC_FRMT_SPEC_FRGB 0x00000040

#define CCE_VC_FRMT_S_T 0x00000080

#define CCE_VC_FRMT_S2_T2 0x00000100

#define VC_FORMAT_TLVERTEX2 CCE_VC_FRMT_RHW |\

CCE_VC_FRMT_DIFFUSE_ARGB |\

CCE_VC_FRMT_SPEC_FRGB |\

 CCE_VC_FRMT_S_T |\

 CCE_VC_FRMT_S2_T2;

// Vertex data block structure.

typedef struct {

float x, y, z;

float rhw;

DWORD diffuse;

DWORD specular;

float s1, t1;

float s2, t2;

} TLVERTEX2, *LPTLVERTEX2;

DWORD size=0;

TLVERTEX2* pv;

DWORD Buf[BUF_SIZE]

DWORD* pBuf = Buf;

// Set the packet HEADER, VC_FORMAT, and VC_CNTL fields.

*pBuf++ = CCE_PACKET3_3D_RNDR_GEN_PRIM;

*pBuf++ = VC_FORMAT_TLVERTEX2;

*pBuf++ = CCE_VC_CNTL_PRIM_TYPE_TRI_LIST | CCE_VC_CNTL_PRIM_WALK_RING |

 (0x00000003L << 16);

pv = (TLVERTEX2*) pBuf;

// Copy triangle vertices into command packet buffer.

// Vertex 0:

pv->x = ((float)R128_AdapterInfo.xres/2.0f);

pv->y = ((float)R128_AdapterInfo.yres/4.0f);

pv->z = 0.5f;

pv->rhw = 1.0f;

pv->diffuse = 0x000000ff;
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-33

3D Rendering
pv->specular = 0x00000000;

pv->s1 = 0.5f;

pv->t1 = 1.0f;

pv->s2 = 0.5f;

pv->t2 = 0.0f;

pv++;

// Vertex 1:

pv->x = (float)R128_AdapterInfo.xres * 0.75f;

pv->y = (float)R128_AdapterInfo.yres * 0.75f;

pv->z = 0.5f;

pv->rhw = 1.0f;

pv->diffuse = 0x0000ff00;

pv->specular = 0x00000000;

pv->s1 = 1.0f;

pv->t1 = 0.0f;

pv->s2 = 1.0f;

pv->t2 = 1.0f;

pv++;

// Vertex 2:

pv->x = (float)R128_AdapterInfo.xres * 0.25f;

pv->y = (float)R128_AdapterInfo.yres * 0.75f;

pv->z = 0.5f;

pv->rhw = 1.0f;

pv->diffuse = 0x00ff0000;

pv->specular = 0x00000000;

pv->s1 = 0.0f;

pv->t1 = 0.0f;

pv->s2 = 0.0f;

pv->t2 = 1.0f;

pv++;

// Compute size of buffer.

size = ((DWORD)pv - (DWORD)(&Buf[0]))/sizeof (DWORD);

// Submit buffer.

Buf[0] |= ((size - 2) << 16);
R128_CCESubmitPackets (Buf, size);
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-34 Proprietary and Confidential

3D Rendering

 0.
Drawing a Triangle List using the 3D_RNDR_GEN_INDX_PRIM Packet
The 3D_RNDR_GEN_INDX_PRIM packet is described in depth in Appendix F. The
packet consists of the following:

• HEADER field describing the kind of packet.

PM4_VC_VLOFF field containing the offset of the vertex buffer from the base of AGP
memory.

PM4_VC_SIZE field specifying the number of vertices in the vertex buffer.

• VC_FORMAT field describing the vertex data block structure.

• VC_CNTL field describing the type of primitive to draw.

• If the VC_CNTL:PRIM_WALK sub-field is CCE_VC_CNTL_PRIM_WALK_IND, an
array of indices into the vertex buffer. Two indices are packed as WORDs per
DWORD. For an odd number of indices, the high WORD of the last field is set to

Example Code: Setting up a packet to draw an independent triangle using
explicit vertex indices

#define CCE_PACKET3_3D_RNDR_GEN_INDX_PRIM 0xC0002300

#define CCE_VC_CNTL_PRIM_TYPE_TRI_LIST 0x00000004

#define CCE_VC_CNTL_PRIM_WALK_IND 0x00000010

#define CCE_VC_FRMT_RHW 0x00000001

#define CCE_VC_FRMT_DIFFUSE_ARGB 0x00000008

#define CCE_VC_FRMT_SPEC_FRGB 0x00000040

#define CCE_VC_FRMT_S_T 0x00000080

#define CCE_VC_FRMT_S2_T2 0x00000100

#define VC_FORMAT_TLVERTEX2 CCE_VC_FRMT_RHW |\

CCE_VC_FRMT_DIFFUSE_ARGB |\

CCE_VC_FRMT_SPEC_FRGB |\

 CCE_VC_FRMT_S_T |\

 CCE_VC_FRMT_S2_T2;

// Vertex data block structure.

typedef struct {

float x, y, z;

float rhw;

DWORD diffuse;

DWORD specular;

float s1, t1;

float s2, t2;

} TLVERTEX2, *LPTLVERTEX2;
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-35

3D Rendering
DWORD size=0;

TLVERTEX2* pv;

DWORD Buf[7]

// This example assumes that a vertex buffer has been allocated

// in a contiguous region of memory in AGP space. The global

// variable VertexBufferPtr contains the linear address where

// vertex data will be written into the vertex buffer. The

// global variable VertexBufferOffset contains the offset from the

// base of AGP memory to the address in VertexBufferPtr.

// Initialize packet command fields.

Buf[0] = CCE_PACKET3_3D_RNDR_GEN_INDX_PRIM;

Buf[1] = VertexBufferOffset;

Buf[2] = 3;

Buf[3] = VC_FORMAT_TLVERTEX2;

Buf[4] = CCE_VC_CNTL_PRIM_TYPE_TRI_LIST |

 CCE_VC_CNTL_PRIM_WALK_IND | 3L << 16;

// Set the vertex index write pointer. This is where vertex

// indices will be written into the packet information body.

pvertindex = (WORD*) &Buf[5];

// Write vertex data to vertex buffer.

pv = (TLVERTEX2*) VertexBufferPtr;

// Vertex 0:

pv->x = ((float)R128_AdapterInfo.xres/2.0f);

pv->y = ((float)R128_AdapterInfo.yres/4.0f);

pv->z = 0.5f;

pv->rhw = 1.0f;

pv->diffuse = 0x000000ff;

pv->specular = 0x00000000;

pv->s1 = 0.5f;

pv->t1 = 1.0f;

pv->s2 = 0.5f;

pv->t2 = 0.0f;

pv++;

// Vertex 1:

pv->x = (float)R128_AdapterInfo.xres * 0.75f;

pv->y = (float)R128_AdapterInfo.yres * 0.75f;

pv->z = 0.5f;

pv->rhw = 1.0f;

pv->diffuse = 0x0000ff00;
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-36 Proprietary and Confidential

3D Rendering
pv->specular = 0x00000000;

pv->s1 = 1.0f;

pv->t1 = 0.0f;

pv->s2 = 1.0f;

pv->t2 = 1.0f;

pv++;

// Vertex 2:

pv->x = (float)R128_AdapterInfo.xres * 0.25f;

pv->y = (float)R128_AdapterInfo.yres * 0.75f;

pv->z = 0.5f;

pv->rhw = 1.0f;

pv->diffuse = 0x00ff0000;

pv->specular = 0x00000000;

pv->s1 = 0.0f;

pv->t1 = 0.0f;

pv->s2 = 0.0f;

pv->t2 = 1.0f;

pv++;

// Write the WORD packed vertex indices into the packet

// information body.

*pvertindex++ = 0; // first vertex

*pvertindex++ = 1; // second vertex

*pvertindex++ = 2; // third vertex

*pvertindex++ = 0; // DWORD alignment padding

// Compute size of packet.

size = (DWORD)pvertindex - (DWORD)&pBuf[5]; // byte-size of

 // indices written.

// Convert size to DWORD count.

size = size/sizeof (DWORD);

// Adjust size for HEADER, PM4_VC _VLOFF, PM4_VC_VSIZE,

// PC_FORMAT and VC_CNTL in packet.

size += 5;

// Set packet size parameter in packet HEADER.

Buf[0] |= ((size - 2) << 16);

// Submit the packet to draw the batch.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-37

3D Rendering

e in
GP

res

d to
ilar

he
R128_CCESubmitPackets (Buf, size);

Example Code: Setting up the packet to draw an independent triangle using the
implicit vertex list in the vertex buffer

// This example is essentially the same as the last example.

// Only the differences are shown here.

#define CCE_VC_CNTL_PRIM_WALK_LIST 0x00000020

DWORD Buf[5];

// Initialize packet command fields.

Buf[0] = CCE_PACKET3_3D_RNDR_GEN_INDX_PRIM | (3L << 16);

Buf[1] = VertexBufferOffset;

Buf[2] = 3;

Buf[3] = VC_FORMAT_TLVERTEX2;

Buf[4] = CCE_VC_CNTL_PRIM_TYPE_TRI_LIST |

 CCE_VC_CNTL_PRIM_WALK_LIST | 3L << 16;

// Fill vertex buffer with data.

...

// Submit the packet to draw.

R128_CCESubmitPackets (Buf, 5);

6.6.3 Texture Mapping

The RAGE 128 contains powerful texture-combining units that can execute complex
multi-texturing operations involving two textures in a single pass. Textures may resid
both local video and AGP memory. The RAGE 128 can texture map directly out of A
memory.

Texture dimensions must be a power of two and cannot be greater than 1024. Textu
may be rectangular (i.e., they need not have the same width and height). When
multi-texturing, both textures may have different dimensions and data types.

The two textures in the multi-texturing stages of the texture-combining unit are referre
as the primary and secondary textures. Their features are configured by a largely sim
set of registers. The primary texture registers are prefixed by PRIM_. The secondary
texture registers are prefixed by SEC_.

For example, the general texture control registers for each are PRIM_TEX_CNTL_C and
SEC_TEX_CNTL_C. For brevity, this text will describe common features in terms of t
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-38 Proprietary and Confidential

3D Rendering

ed in
 of
primary texture registers only. Only secondary stage-specific features are described
separately for the secondary texture.

Enabling Texture Mapping
Texture mapping may be enabled and disabled through the TEX_CNTL_C:TEX_EN
field.

• ‘0’ disables texture mapping.

• ‘1’ enables texture mapping.

Texture Size and Pitch Parameters
For both the primary and secondary texture, the size and pitch parameters are enter
the TEX_SIZE_PITCH_C register. For the primary texture, the byte offset to the start
the texture data for the base texture is entered in register TEX_0_OFFSET. Byte offsets
for mipmaps are entered in registers TEX_1_OFFSET to TEX_10_OFFSET. Byte
offsets for the secondary texture and its mipmaps are loaded into registers
SEC_TEX_0_OFFSET to SEC_TEX_10_OFSET.

Texture Format
The texture format is set through the PRIM_TEX_CNTL_C:PRIMARY_DATATYPE. The
following formats are supported:

Table 6-3 PRIMARY_DATATYPE

State Description

0 2-bpp VQ

1 4-bpp pseudo color

2 8-bpp pseudo color

3 16-bpp ARGB 1555

4 16-bpp RGB 565

5 24-bpp RGB

6 32-bpp ARGB 8888

7 8-bpp RGB 332

8 Y8 gray scale

9 RGB8 gray scale

10 16-bpp pseudo color
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-39

3D Rendering

g
Texture Filtering
The texture magnification and minification filtering modes are set through the
PRIM_TEX_CNTL_C:PRIM_MIN_BLEND_FCN and
PRIM_TEX_CNTL_C:PRIM_MAG_BLEND_FCN fields. They may be set to the
following values:

States 2 to 5 for minification are only valid when mipmapping is enabled. Mipmappin
may be enabled or disabled by writing ‘0’ or ‘1’ to
PRIM_TEX_CNTL_C:PRIM_MIP_MAP_DIS.

11 YUV 422 packed

12 YUV 422 packed

14 AYUV 444

15 ARGB 4444

Table 6-4 PRIM_MIN_BLEND_FCN

State Description

0 Pick nearest in largest map

1 Bilinear in largest map

2 Pick nearest in nearest map

3 Bilinear in nearest map

4 1x1 filtering

5 Trilinear

Table 6-5 PRIM_MAG_BLEND_FCN

State Description

0 Pick nearest in largest map

1 Bilinear in largest map

2 Pick nearest in largest map

3 Bilinear in largest map

4 Pick nearest in largest map

5 Bilinear in largest map

Table 6-3 PRIMARY_DATATYPE (Continued)

State Description
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-40 Proprietary and Confidential

3D Rendering

when
at
.0
fter
e

1.0f.

the
 and
ing
 color
t

d
Texture Addressing Modes
Texture addressing modes control how the texture is applied on the target primitive
the vertex S or T coordinates are greater than 1.0. Clamp mode replicates the texel
coordinate 1.0 to the edge of the primitive. Mirror mode ‘flips’ the texture about the 1
coordinate to produce a mirror image. Border color mode fills the remaining pixels a
1.0 with the texture's border color. Wrap addressing mode repeats, or tiles the textur
along the texture coordinate axis.

Texture clamping for the texture S and T coordinates are set through the
PRIM_TEX_CNTL_C:PRIM_TEXTURE_CLAMP_MODE_S and
PRIM_TEX_CNTL_C:PRIM_TEXTURE_CLAMP_MODE_T fields. Texture clamping
specifies how the texels should be drawn at coordinates beyond the range of 0.0 to
The following states may be set:

The border color is set through the PRIM_TEXTURE_BORDER_COLOR register in
RGBA8888 format for RGB texture data types, or AYUV format for YUV datatypes.

Texture Wrapping
The PRIM_TEX_CNTL_C:PRIM_TEX_WRAP_S and
PRIM_TEX_CNTL_C:PRIM_TEX_WRAP_T fields enable and disable cylindrical
texture wrapping for the S and T coordinates, respectively.

Texture Combining
The RAGE 128 contains two texture combine units, one for the primary and one for
secondary texture. The units apply a color combining function for the RGB channels
an alpha combining function for the alpha channel. Both the color and alpha combin
functions take two arguments as input. The first and second arguments are called the
factor and input factor for the color combining function, and the alpha factor and inpu
factor alpha for the alpha combining function. Both units have identical combining
functions for the most part, but the secondary texture unit has additional functions an
inputs to process the output from the primary unit.

Table 6-6 PRIM_TEXTURE_CLAMP_MODE_S

State Description

0 Wrap the texture (tile)

1 Mirror the texture

2 Clamp the texture to the texel at 1.0

3 Use border color as texel color after 1.0
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-41

3D Rendering

 are
t
The RAGE 128 can also combine the output of the texture combine units with the
interpolated color of the primitive. This post-multitexturing combining operation is
referred to as texture lighting in the RAGE 128 paradigm. Separate lighting functions
applied for the color and alpha channels. For this post-multitexturing lighting, the firs
argument is implicitly the output of the texture combine units, and the second is the
interpolated color or alpha values of the primitive (i.e., the equivalents of the two
arguments in the texture combine units).

The color combining function is set through the PRIM_TEXTURE_COMBINE_CNTL_C:
PRIMARY_COMB_FCN field . It may be set to one of the following values:

Table 6-7 PRIMARY_COMB_FCN

State Description

0
Disable.
The output color is the texture color or interpolated color if shading.

1
Copy.
Output color is the COLOR_FACTOR

2
Copy input.
Output color is the INPUT_FACTOR

3
Modulate.
Output color is COLOR_FACTOR * INPUT_FACTOR

4
Modulate * 2.
Output color is COLOR_FACTOR * INPUT_FACTOR * 2

5
Modulate * 4.
Output color is COLOR_FACTOR * INPUT_FACTOR * 4

6
Add.
Output color is COLOR_FACTOR + INPUT_FACTOR

7
Add signed.
Output color is COLOR_FACTOR + INPUT_FACTOR – 128

8
Blend vertex.
Output color is (COLOR_FACTOR * interpolator alpha) + (INPUT_FACTOR * (1 –
interpolator alpha))

9
Blend texture.
Output color is (COLOR_FACTOR * primary texel alpha) + (INPUT_FACTOR * (1
– primary texel alpha))

10
Blend constant.
Output color is (COLOR_FACTOR * CONSTANT_ALPHA) + (INPUT_FACTOR *
(1 – CONSTANT_ALPHA))

11
Blend premultiply.
Output color is COLOR_FACTOR + (INPUT_FACTOR * (1 – primary texel alpha))
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-42 Proprietary and Confidential

3D Rendering
The color factor is set through the
PRIM_TEXTURE_COMBINE_CNTL_C:COLOR_FACTOR field:

The input factor is set through the
PRIM_TEXTURE_COMBINE_CNTL_C:INPUT_FACTOR field:

12
Blend previous.
Output color is (COLOR_FACTOR * primary texel alpha) + (INPUT_FACTOR * (1
– primary texel alpha))

13
Blend pre-multiply inverse.
COLOR_FACTOR + (INPUT_FACTOR * primary texel alpha)

14
Add signed * 2.
Output color is (COLOR_FACTOR + INPUT_FACTOR – 128) * 2

15
Blend constant color.
Output color is (COLOR_FACTOR * CONSTANT_COLOR) + (INPUT_FACTOR *
(1 – CONSTANT_COLOR))

Table 6-8 COLOR_FACTOR

State Description

4 Texture color (or interpolator color if shading)

5 NOT Texture color (or NOT interpolator color if shading)

6 Texture alpha (or interpolator alpha if shading)

7
NOT Texture alpha (or NOT interpolator alpha if
shading)

Table 6-9 INPUT_FACTOR

State Description

2 CONSTANT_COLOR

3 CONSTANT_ALPHA

4 Interpolator color

5 Interpolator alpha

Table 6-7 PRIMARY_COMB_FCN (Continued)

State Description
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-43

3D Rendering
The alpha combine function is set through the
PRIM_TEXTURE_COMBINE_CNTL_C:COMB_FCN_ALPHA field, which may be set to
one of the following:

The alpha factor is set through the
PRIM_TEXTURE_COMBINE_CNTL_C:ALPHA_FACTOR field:

The alpha input factor is set through the PRIM_TEXTURE_COMBINE_CNTL_C:
INPUT_FACTOR_ALPHA field:

Table 6-10 COMB_FCN_ALPHA

State Description

0
Disable.
The output alpha is the texture alpha or interpolated alpha if shading.

1
Copy.
Output alpha is the ALPHA_FACTOR.

2
Copy input.
Output alpha is the INPUT_FACTOR_ALPHA

3
Modulate.
Output alpha is ALPHA_FACTOR * INPUT_FACTOR_ALPHA.

4
Modulate * 2.
Output alpha is ALPHA_FACTOR * INPUT_FACTOR_ALPHA * 2.

5
Modulate * 4.
Output alpha is ALPHA_FACTOR * INPUT_FACTOR_ALPHA * 4.

6
Add.
Output alpha is ALPHA_FACTOR + INPUT_FACTOR_ALPHA.

7
Add signed.
Output alpha is ALPHA_FACTOR + INPUT_FACTOR_ALPHA – 128.

14
Add signed * 2.
Output color is (COLOR_FACTOR + INPUT_FACTOR – 128) * 2.

Table 6-11 ALPHA_FACTOR

State Description

6 Texture alpha (or interpolator alpha if shading)

7 NOT Texture alpha (or NOT interpolator alpha if shading)
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-44 Proprietary and Confidential

3D Rendering

ional
The CONSTANT_COLOR and CONSTANT_ALPHA are the RGB and A components,
respectively, entered in RGBA8888 format in the CONSTANT_COLOR register.

The secondary texture allows two additional states for the input factor and one addit
state for the alpha input factor.

The SEC_TEX_COMBINE_CNTL_C:SECONDARY_INPUT_FACTOR and the
SEC_TEX_COMBINE_CNTL_C:SECONDARY_INPUT_FACTOR_ALPHA fields may
be set to the following states:

The post-multitexturing lighting function is set through the
TEX_CNTL_C:TEX_LIGHT_FN. It may be set to the following values:

Table 6-12 INPUT_FACTOR_ALPHA

State Description

1 CONSTANT_ALPHA

2 Interpolator alpha

Table 6-13 SECONDARY_INPUT_FACTOR

State Description

2 CONSTANT_COLOR

3 CONSTANT_ALPHA

4 Interpolator color

5 Interpolator alpha

8 Previous color

9 Previous alpha

Table 6-14 SECONDARY_INPUT_FACTOR_ALPHA

State Description

1 CONSTANT_ALPHA

2 Interpolator alpha

4 Previous alpha
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-45

3D Rendering
The post-multitexturing alpha lighting function is set through the
TEX_CNTL_C:ALPHA_LIGHT_FN field. It may be set to the following:

Table 6-15 TEX_CNTL_C:TEX_LIGHT_FN

State Description

0
Disable.
The output color is the texture color or interpolated color if shading.

1
Copy.
Output color is the COLOR_FACTOR

2
Copy input.
Output color is the INPUT_FACTOR

3
Modulate.
Output color is COLOR_FACTOR * INPUT_FACTOR

4
Modulate * 2.
Output color is COLOR_FACTOR * INPUT_FACTOR * 2

5
Modulate * 4.
Output color is COLOR_FACTOR * INPUT_FACTOR * 4

6
Add.
Output color is COLOR_FACTOR + INPUT_FACTOR

7
Add signed.
Output color is COLOR_FACTOR + INPUT_FACTOR - 128

8
Blend vertex.
ZOutput color is (COLOR_FACTOR * interpolator alpha) +
(INPUT_FACTOR * (1 - interpolator alpha))

9
Blend texture.
Output color is (COLOR_FACTOR * primary texel alpha) +
(INPUT_FACTOR * (1 - primary texel alpha))

10
Blend constant.
Output color is (COLOR_FACTOR * CONSTANT_ALPHA) +
(INPUT_FACTOR * (1 - CONSTANT_ALPHA))

12
Blend previous.
Output color is (COLOR_FACTOR * primary texel alpha) +
(INPUT_FACTOR * (1 - primary texel alpha))

14
Add signed * 2.
Output color is (COLOR_FACTOR + INPUT_FACTOR - 128) * 2

15
Blend constant color.
Output color is (COLOR_FACTOR * CONSTANT_COLOR) +
(INPUT_FACTOR * (1 - CONSTANT_COLOR))
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-46 Proprietary and Confidential

3D Rendering

ing on
Texture Coordinate Selection
In addition to the corresponding fields in the PRIM_TEX_CNTL_C register, the
secondary texture contains the:

• SEC_TEX_CNTL_C:SEC_SRC_SEL_ST field for selecting the primary or
secondary texture coordinate set.

• SEC_TEX_CNTL_C:SEC_SRC_SEL_W field for selecting the primary or secondary
W coordinate.

For both fields:

• ‘0’ selects the primary

• ‘1’ selects the secondary.

Mipmapping
Mipmapping may be enabled separately for each texture stage. To enable mipmapp
the primary texture, set PRIM_TEX_CNTL_C:PRIM_MIP_MAP_DIS to ‘0’. A similar
field exists in the SEC_TEX_CNTL_C register.

Table 6-16 TEX_CNTL_C:ALPHA_LIGHT_FN

State Description

0
Disable.
The output color is the texture color or interpolated color if shading.

1
Copy.
Output color is the COLOR_FACTOR

2
Copy input.
Output color is the INPUT_FACTOR

3
Modulate.
Output color is COLOR_FACTOR * INPUT_FACTOR

4
Modulate * 2.
Output color is COLOR_FACTOR * INPUT_FACTOR * 2

5
Modulate * 4.
Output color is COLOR_FACTOR * INPUT_FACTOR * 4

6
Add.
Output color is COLOR_FACTOR + INPUT_FACTOR

7
Add signed.
Output color is COLOR_FACTOR + INPUT_FACTOR - 128
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-47

3D Rendering

y by
 way
ure

t
le.

e

d data

.

e
ts, as
Loading Texture Data
Texture data can quite easily be copied into the frame buffer or AGP memory directl
the host application. However, this method has a shortcoming. It does not provide a
to synchronize the data load with the current drawing stream. There is no way to ens
the current texture data is not being fetched by the current drawing operation withou
taking extra, potentially performance-degrading precautions like waiting for engine id
A better method (recommended by ATI) is to load the data using the HOSTDATA_BLT
type-3 packet. The advantage of this method is that it streams the data load into the
drawing stream.

For an example of how to use the HOSTDATA_BLT packet to load texture data, please se
the texture.c file in the Chap6\3D\Util directory of the RAGE 128 DDK.

After loading texture data, the pixel cache should be flushed to ensure that all cache
is flushed to memory.

This may be done by setting the PC_GUI_CTLSTATE:PC_FLUSH_GUI field to ‘3’.
Also, whenever switching textures, the texel cache should be flushed.

To flush the texel cache, set the TEX_CNTL_C:TEX_CACHE_FLUSH field to ‘1’. This
will flush the texel cache at the start of the next primitive. This is a sticky bit. It will
remain asserted until the next primitive is issued, then it will automatically be cleared

6.6.4 Setting 3D Render States

This section describes how to set rendering states for the 3D functional blocks on th
RAGE 128. The register presented here may be modified through Type-0 CCE packe
demonstrated by the following code:

int i = 0;

DWORD Buf[BUF_SIZE];

Buf[i++] = CCE_PACKET0 | (register_address >> 2);

Buf[i++] = register_content;

Buf[0] |= ((i - 2) << 16);
R128_CCESubmitPackets (Buf, i);
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-48 Proprietary and Confidential

3D Rendering

data
Alpha Blending
Alpha blending allows the source primitive data to be combined with the destination
in various ways to achieve special effects like translucency.

The alpha blend equation is:

• CombFunc (SrcBlendFactor(SrcData), DestBlendingFactor (dstData))

Alpha blending is enabled by setting the TEX_CNTL_C:ALPHA_EN field to ‘1’. The
source and destination alpha blending factors are set through the
MISC_3D_STATE_CNTL_REG:ALPHA_BLND_SRC and
MISC_3D_STATE_CNTL_REG:ALPHA_BLND_DST fields The following factors may
be set:

Table 6-17 ALPHA_BLND_SRC

State Description

BLEND_ZERO Blend factor is (0, 0, 0, 0)

BLEND_ONE Blend factor is (1, 1, 1, 1)

BLEND_SRCCOLOR Blend factor is (Rs, Gs, Bs, As)

BLEND_INVSRCCOLOR Blend factor is (1-Rs, 1-Gs, 1-Bs, 1-As)

BLEND_SRCALPHA Blend factor is (As, As, As, As)

BLEND_INVSRCALPHA Blend factor is (1-As, 1-As, 1-As, 1-As)

BLEND_DESTALPHA Blend factor is (Ad, Ad, Ad, Ad)

BLEND_INVDESTALPHA Blend factor is (1-Ad, 1-Ad, 1-Ad, 1-Ad)

BLEND_DESTCOLOR Blend factor is (Rd, Gd, Bd, Ad)

BLEND_INVSDESTCOLOR Blend factor is (1-Rd, 1-Gd, 1-Bd, 1-Ad)

BLEND_SRCALPHASAT Blend factor is (f, f, f, 1), f = min (As, 1-Ad)

BLEND_BOTHSRCALPHA
SRC Blend factor is (As, As, As, As), force
DST blend factor to (1-As, 1-As, 1-As, 1-As)

BLEND_BOTHINVSRCALPHA
SRC Blend factor is (1-As, 1-As, 1-As, 1-As),
force DST blend factor to (As, As, As, As)

Table 6-18 ALPHA_BLND_DST

State Description

BLEND_ZERO Blend factor is (0, 0, 0, 0)

BLEND_ONE Blend factor is (1, 1, 1, 1)
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-49

3D Rendering

to a

The Alpha-combing function is set through the
MISC_3D_STATE_CNTL_REG:ALPHA_COMB_FCN field. The following
alpha-combination functions may be set:

Alpha Testing
Alpha testing allows a pixel to be rejected based on a comparison of its alpha value
reference alpha value.

The pass/fail decision is represented by the following formula:

• Decision = AlphaTestOperation (Source Alpha, ReferenceAlpha))

The alpha reference is an 8-bit value ranging from zero to 255. It is set by writing the
MISC_3D_STATE_CNTL_REG:REF_ALPHA field. The alpha test function is set
through the MISC_3D_STATE_CNTL_REG:ALPHA_TEST_OP field. The following
states may be set:

BLEND_SRCCOLOR Blend factor is (Rs, Gs, Bs, As)

BLEND_INVSRCCOLOR Blend factor is (1-Rs, 1-Gs, 1-Bs, 1-As)

BLEND_SRCALPHA Blend factor is (As, As, As, As)

BLEND_INVSRCALPHA Blend factor is (1-As, 1-As, 1-As, 1-As)

BLEND_DESTALPHA Blend factor is (Ad, Ad, Ad, Ad)

BLEND_INVDESTALPHA Blend factor is (1-Ad, 1-Ad, 1-Ad, 1-Ad)

BLEND_DESTCOLOR Blend factor is (Rd, Gd, Bd, Ad)

BLEND_INVSDESTCOLOR Blend factor is (1-Rd, 1-Gd, 1-Bd, 1-Ad)

BLEND_SRCALPHASAT Blend factor is (f, f, f, 1), f = min (As, 1-Ad)

Table 6-19 ALPHA_COMB_FCN

State Description

0 Add and clamp

1 Add but don’t clamp

2 Subtract DST from SRC and clamp

3 Subtract DST from SRC but don’t clamp

Table 6-18 ALPHA_BLND_DST (Continued)

State Description
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-50 Proprietary and Confidential

3D Rendering

table.
E
ertex

ctor at
Fog Blending
Fog blending is performed according to the following equation:

• Final color = f x Cp + (1 – f) x Cf

• f is the fog factor at the pixel.

• Cp is the color of the source primitive pixel.

• Cf is the fog color.

The RAGE 128 supports both table fog and vertex fog. Table fog determines the fog
factor by using the interpolated z value at each pixel to index into a 256-element fog
The fog factor in the table is an 8-bit value ranging from 0 to 255. Note that the RAG
128 uses the vertex z value, and not the vertex w value, to index into the fog table. V
fog uses the interpolated alpha component of the vertex specular color as the fog fa
each pixel.

The fog method may be selected through the
MISC_3D_STATE_CNTL_REG:FOG_TABLE_EN field.

• ‘0’ selects vertex fog.

• ‘1’ selects table fog.

The fog color is set through the FOG_COLOR register in RGB 888 format.

Table 6-20 ALPHA_TEST_OP

State Description

0 Never pass

1 Pass if Src < ref

2 Pass if Src <= Ref

3 Pass if Src == Ref

4 Pass if Src >= Ref

5 Pass if Src > Ref

6 Pass if Src != Ref

7 Always Pass
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-51

3D Rendering

 to

 that

w the
To set up the table fog, first write the table index at which new entries will be entered
the FOG_TABLE_INDEX register. Next, write the fog table entries to the
FOG_TABLE_DATA register. The index is post-incremented after each write.

The following example shows how to setup the fog table using a Type-0 packet. Note
the CCE_PACKET_0_ONE_REG_WR flag has been added to the packet header for the
table data packet, signifying that all data writes will go to the same register.

Example Code: Submitting a CCE packet
#define CCE_PACKET0 0x00000000

#define CCE_PACKET_0_ONE_REG_WR(0x00000001 << 15)

#define FOG_TABLE_INDEX 0x1a14

#define FOG_TABLE_DATA 0x1a18

DWORD Buf[BUF_SIZE];

// Copy the fog table passed into this function.

Buf[0] = CCE_PACKET0 | (FOG_TABLE_INDEX >> 2);

Buf[1] = 0x00000000;

Buf[2] = CCE_PACKET0 | CCE_PACKET_0_ONE_REG_WR | (FOG_TABLE_DATA >> 2);

for (i=3; i < 259; i++)

Buf[i] = 258 - i;

Buf[2] |= (255L << 16);
R128_CCESubmitPackets (Buf, 259);

Table fog parameters such as the fog start, end, and density may be set through the
FOG_3D_TABLE_START, FOG_3D_TABLE_END, and FOG_3D_TABLE_DENSITY
registers, respectively.

Shading
The shading mode determines the color or colors used to render the primitive and ho
colors are applied. The shading mode is set through the
PM4_VC_FPU_SETUP:PM4_COLOR_FCN field. It may be set to the following states:

Table 6-21 PM4_COLOR_FCN

State Description

0 Solid shade
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-52 Proprietary and Confidential

3D Rendering

ird

eans
x

he

ng a
aller

p.
Solid shading causes the primitive to be colored in the solid color set through the
CONSTANT_COLOR_C register.

Flat shading causes the primitive to be colored according to the color of the first or th
vertex. If PM4_VC_FPU_SETUP:FLAT_SHADE_VERTEX is set to ‘0’, the D3D
convention is used, which selects the color of the first vertex as the vertex color. ‘1’ m
use the OpenGL convention. The OpenGL convention selects the color of the third verte
as the primitive color.

Gouraud shading colors the primitive by interpolates the color at each vertex across t
primitive.

Dithering
Dithering is a technique for reducing the banding artifacts that may appear when usi
limited number of colors. Dithering is typically necessary when using 16-bpp and sm
display modes, such as RGB565, RGB1555, etc.

The RAGE 128 implements two dithering algorithms: error diffusion, and table looku
The algorithm may be selected through the SCALE_3D_CNTL:SCALE_DITHER field.

• ‘0’ selects error diffusion.

• ‘1’ selects table look up.

If error diffusion dither is selected, setting the SCALE_3D_CNTL:DITHER_INIT field
to:

• ‘0’ causes the current contents of the error register to be used at the start of the
scanline.

• ‘1’ causes the error value to be reset to ‘0’ at the start of the line.

If table dither is selected, setting SCALE_3D_CNTL:DITHER_INIT disables dithering
during alpha blending operations.

1 Flat shade

2 Gouraud shade

Table 6-21 PM4_COLOR_FCN (Continued)

State Description
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-53

3D Rendering

d of
 all
n the
ss

tion.

r, and
For best visual results, it is recommended that 32-bpp display modes be used instea
16-bpp whenever possible. 32-bpp offers 16.7 million colors. This virtually eliminates
banding artifacts and obviates the need for dithering. 32-bpp rendering performance o
RAGE 128 is virtually identical to 16-bpp performance, resulting in negligible or no lo
in rendering frame rates.

Culling
Culling allows specific operations to be performed on triangles based on their orienta
It is frequently used to eliminate back facing triangles. The culling capabilities of the
RAGE 128 are configured through the PM4_VC_FPU_SETUP register.

PM4_VC_FPU_SETUP:FRONT_DIR selects the front facing orientation of the
triangles.

• ‘0’ selects clockwise.

• ‘1’ selects counter clockwise.

Fields PM4_VC_FPU_SETUP:BACKFACE_CULLING_FN and
PM4_VC_FPU_SETUP:FRONTFACE_CULLING_FN dictate what actions to take for
back and front facing triangles, respectively. Both may be set to one of the following
states:

Z Testing
Z testing is a method for performing hidden surface removal. The z values for source
primitives are compared against the z values for destination pixels stored in a z buffe
a decision is made to accept or reject, or occlude, the source pixel.

The z depth test is performed according to the following formula:

• Decision = ZDepthTestFunction (SourceZDepth, DestinationZDepth)

Table 6-22 BACKFACE_CULLING_FN and FRONTFACE_CULLING_FN

State Description

0 Cull the triangle

1 Draw the triangle as points

2 Draw the triangle as lines

3 Reverse area and draw the triangle as solid
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-54 Proprietary and Confidential

3D Rendering

ed

et
The z depth test function is set through the Z_STEN_CNTL_C:Z_TEST field. It may be
set to the following states:

The action to take following the z test with respect to updating the z buffer is controll
through the TEX_CNTL_C:Z_MASK field.

• ‘0’ disables writes to the z buffer.

• ‘1’ enables z writes.

Z testing is enabled and disabled through the TEX_CNTL_C:Z_EN field.

• ‘0’ disables z testing

• ‘1’ enables z testing.

The RAGE 128 supports 16bit, 24 bit, and 32 bit z buffers. The z buffer bit depth is s
through the Z_STEN_CNTL_C:Z_PIX_WIDTH field. It may be set to the following
values:

Table 6-23 Z_TEST

State Description

0 Z test never passes

1 Pass if Source Z < destination Z

2 Pass if Source Z <= destination Z

3 Pass if Source Z == destination Z

4 Pass if Source Z >= destination Z

5 Pass if Source Z > destination Z

6 Pass if Source Z != destination Z

7 Z test always passes

Table 6-24 Z_PIX_WIDTH

State Description

0 16 bit z depth

1 24 bit z depth
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-55

3D Rendering

 For

ying

-bit
lower

D

The depth of the z buffer need not be the same as the depth of the drawing surface.
instance, it is possible to use a 32-bit z buffer with an RGB 565 drawing surface.

Stencil Buffer
The stencil buffer is an auxiliary buffer used for performing special pixel by pixel
operations. It may be used to stencil out specific shapes for operations such as appl
shadow tones or masking out drawing regions. The RAGE 128 supports an eight-bit
stencil buffer. The stencil buffer is interleaved with a 24-bit z buffer in a combined 32
buffer. The stencil buffer occupies the upper eight bits, and the z buffer occupies the
24 bits.

The stencil buffer operates according to the following equation:

• StencilCompareFunction ((StenciReference AND StenciMask), (StencilValue AN
StencilMask))

The stencil reference is an eight-bit value ranging from ‘0’ to ‘255’. It is set by writing
STENCIL_REF_MASK_C:STEN_REF. The stencil mask is set by writing the
STENCIL_REF_MASK_C:STEN_MSK field.

The stencil compare function is selected by setting Z_STEN_CNTL:STENCIL_TEST
field to one of the following values:

2 32 bit z depth

Table 6-25 STENCIL_TEST

State Description

0 Never pass

1 Pass if <

2 Pass if <=

3 Pass if ==

4 Pass if >=

5 Pass if >

6 Pass if !=

7 Always pass

Table 6-24 Z_PIX_WIDTH

State Description
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-56 Proprietary and Confidential

3D Rendering

 on a
 on

ses but

il
Different actions may be prescribed with respect to updating the stencil buffer based
number of pass/fail criteria. Specifically, a set of stencil operations may be set based
whether the stencil test fails, both the stencil and z tests pass, or the stencil test pas
the z test fails.

These operations may be set by writing the Z_STEN_CNTL_C:STEN_SFAIL_OP,
Z_STEN_CNTL_C:STEN_ZPASS_OP, and Z_STEN_CNT_CL:STEN_ZFAIL_OP
fields. Each may be set to one of the following states:

Data written back to the stencil buffer is masked by the stencil write mask. The stenc
write mask is set through the STEN_REF_MASK_C:STEN_WRITE_MSK field.

Table 6-26 States for Stencil Buffer

State Description

0 Stencil buffer value = current

1 Stencil buffer value = 0

2 Stencil buffer value = Stencil Reference

3 Increment current stencil value by 1

4 Decrement current stencil value by 1

5 Stencil buffer value = NOT current
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 6-57

3D Rendering
This page intentionally left blank.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
6-58 Proprietary and Confidential

Chapter 7
Advanced Topics

7.1 Scope
This section covers advanced topics, such as:

“Back-End Overlay and Scalar” on page 7-2

“Auto-Flipping and Advanced Deinterlacing” on page 7-10

“Overlay Autonomous Updating” on page 7-12

“Synchronizing Decoded Video Streams to the Display Refresh” on page 7-13

“Programming the Scalar” on page 7-15

“Front-end Scalar” on page 7-36

“Bus Mastering” on page 7-37
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-1

Back-End Overlay and Scalar

 of
cs),
mory.

cs.

n top

le will
s and

t

ss of

while

he

ore

ch as an
7.2 Back-End Overlay and Scalar
The Back End Overlay is a hardware technique that allows the simultaneous display
two types of graphics on the CRT screen (i.e. composite video and computer graphi
while keeping the video and graphics sources in separate buffers of the graphics me

The overlaid video is seen through a window which is on top of the computer graphi
The the overlay surface buffer corresponds to the overlay window. The primary-surface
buffer stores the graphics data.

As the two surfaces are independent of each other in display time, overlaying video o
of the primary surface will not alter the physical bits in the surface underneath it.

The overlay registers define a rectangle on the primary surface such that the rectang
contain the overlay surface. When simultaneously displaying both computer graphic
video, the following events occurs:

1. The DAC (Digital to Analog Converter) reads the data in the primary surface along
each scanline until it hits the left edge of the overlay rectangle.

2. Then, it switches to the overlay surface and reads from there until hitting the righ
edge of the rectangle.

3. The DAC switches its reading back to the original primary surface image. This
switching from primary surface to the overlay and back may happen on every pa
the scanline until the video is completely overlaid.

The overlay can have a different pixel depth than the primary surface. For example,
8bpp may look fine for the primary surface, a video clip may need to be 16bpp to be
acceptable. The pixel depth switches seamlessly between the primary surface and t
overlay.

The RAGE 128 uses the following scalars:

Video Input Scalar

This scalar can down-scale video horizontally (and sometimes vertically as well) bef
video is fed to the RAGE 128.

Horizontal Down Scalars

These scalars are located on the capture ports. Use them in case an external part su
MPEG or HDTV decoder don not have their own downscalars.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
7-2 Proprietary and Confidential

Back-End Overlay and Scalar

olor

such

uter

with

n be

lor

y
 is to
.

Blits Scalar

The 2D/3D engine can also perform scale blits. Use these techniques to scale and c
converted video.

Scan Conversion Scalars

These scalars are located in the “scan conversion” portion of a TV encoder product
as ATI’s ImpacTV.

Ratiometric Expander Scalars

These scalars are used in the RAGE 128 models that are dedicated for laptop comp
applications.

Back-end Video Scalar

This was the first scalar put into a mainstream product. It has since been enhanced
every revision of ATI’s graphics accelerators.

Subpicture Scalar

This scalar supports DVD applications.

Back-end Video Scalar

This scalar has evolved into a very capable and feature rich scaling engine.Video ca
displayed directly from the video frame buffer(s) while other graphics are displayed from
a graphics frame buffer. Hardware will composite these two images on the way to the
display. The Back End Video Scalar does the job of scaling and color converting the
video.

• The main purpose for this scalar is upscaling. It will read frames of video directly
out of the frame buffer (generally in their native resolution) scale them up, co
convert the images to RGB, and blend them with the primary display pixels.

• However, this scalar can also downscale. It requires a formidable amount of
signal processing to spatially resample (i.e. scale) an entire frame or field of
video.

• This processing is performed during a short period of time during each displa
refresh. The more that the video is downscaled vertically, the less time there
perform this processing, and the more powerful the filter engines have to be
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-3

Back-End Overlay and Scalar

ing

h as

r
le

he
Recently Microsoft proposed new requirements related to video scalars. Before read
the remainder of this chapter, read the following documents:

• To review these requirements, look under NDA (they are not included here).

• For more details, refer to Microsoft’s draft of PC99.

If you don’t read these documents, you’ll miss valuable background information, suc
the definition of terms (e.g. tap and aliasing) that are used in this manual. This
information is continually evolving.

Some highlights about scaling quality are:

• For corporate and laptop PC applications, use the 2x2 tap-filter kernel. This means
that the filter engine will interpolate from a 2x2 region of the source image (four
pixels in a square) to create an output pixel.

• For PC used in an entertainment application, use the 4x3 tap-filter kernel.

• Generate a truncated-sinc curve (sinc = sin(x)/x) as a function of scaling ratio). Filte
coefficients must be programmed with this curve in order to achieve an acceptab
quality level.

• Minimize the spatial aliasing (artifacts created by imperfect resampling of some
types of patterns in the source image).

• Enable the ability to zoom by a variable factor of up to 8:1 in 2-pixel increments.

• Enable the ability to shrink by a variable factor of up to 16:1 in 2-pixel increments.

• For Digital-TV, the scaling engine must accept and scale 1280 horizontal pixels.

• When shrinking by factors up to 2:1, image quality should not be perceptibly
degraded (4:1 for PC’s in an entertainment setting).

While these requirements are stringent, they can be realized with a combination of t
RAGE 128’s hardware and advanced drivers.

7.2.1 Feature Summary for the Back End Video Scalar

New Features

• A GUI stall feature allows MPEG decode to be synchronized with frame
flipping.

• Subpicture decoder and scalar interface and alpha-blending compositor.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
7-4 Proprietary and Confidential

Back-End Overlay and Scalar

 any

f the

).

.

g

ters
• When the video window is cropped by the desktop, it can be updated without
artifacts because there is sufficient double buffering of scalar control register
fields. There is a register locking mechanism to allow autonomous updates o
overlay characteristics. Double buffering can be disabled.

• Weave in a variety of styles designed to eliminate motion artifacts, including
styles optimal for films provided via NTSC and PAL video standards and viewing
freeze frame on a VCR.

• 4-tap vertical filtering on all color components (Y, U, and V, RGB in RGB8888
Some restrictions apply.

• Two color-temperature settings. The recommended setting uses an improved
color conversion equation.

• Vertical-filter engines are adaptively reconfigured to either filter more pixels
with lower quality or fewer pixels with high quality as needed to keep the
horizontal filters filled with as much data as possible data.

Other Features

• Performs deinterlacing and color adjustments. Supports the following color formats:

• RGB1555, RGB565

• RGB8888

• Planer YUV9, YUV12

• Packed YUYV, UYVY

• U’s and V’s, or R’s and B’s can be swapped in any format.

• Surfaces can be either linear or tiled surfaces. Tiled surfaces maximize the
performance of hardware assisted video decompression.

• 4-tap horizontal filtering on all color components (Y, U, and V, RGB in RGB8888)

• 4-tap vertical filtering on all color components (Y, U, and V, RGB in RGB8888 -
restrictions apply).

• 4-tap filter coefficients are adaptively programmed to the optimal filter for the scalin
ratio.

• For all four tap modes, sharpness enhancing filters can be programmed.

• Vertical filters engines are adaptively reconfigured to either filter more pixels with
lower quality or fewer pixels with high quality as needed to keep the horizontal fil
filled with as much data as possible data.

• In four tap modes sharpness enhancing filters can be programmed.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-5

Back-End Overlay and Scalar

er to
e

y
ds.
ay

roved
• When downscaling, the scalar can read in up to four lines and blend them togeth
produce a single output line. This means up to 25% vertical reduction without lin
dropping is possible (50% only in RGB565 and 1555).

• The scalar can zoom in with sub-pixel windowing accuracy.

• When the video window is cropped by the desktop, it can be updated without an
artifacts because there is sufficient double buffering of scalar control register fiel
There is a register locking mechanism to allow autonomous updates of the overl
characteristics. Double buffering can be disabled.

• Supports either one of two capture ports, or a software application as a video
provider.

• Either bob the deinterlace fields (with vertical shift on either field) or weave two
fields together.

• Can weave in a variety of styles designed to eliminate motion artifacts - including
styles optimal for films provided via NTSC and PAL video standards and viewing
freeze frame on a VCR.

• There are two color temperature settings. The recommended setting uses an imp
color conversion equation.

• Video-specific Gamma Correction, Brightness Control, and Saturation Control.

7.2.2 Functional Overview

Table 7-1 Supported Modes

Mode Scaling
Type of Filtering

Pick Nearest 2-Tap Horz 2-Tap Vert 4-Tap Horz 4-Tap Vert

RGB 1555
Up Y Y (new) Y (new) Y (new) N

Down Y Y (new) Y (new) Y (new) N

RGB 565
Up Y Y (new) Y (new) Y (new) N

Down Y Y (new) Y (new) Y (new) N

RGB 32
Up Y Y (new) Y (new) Y (new) Y (new)

Down Y Y (new) Y (new) Y (new) N

YUV9
Up Y Y Y Y (new +uv) Y (new)

Down Y Y Y Y (new +uv) N
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
7-6 Proprietary and Confidential

Back-End Overlay and Scalar

hese
bove,

been

,
 with

in a

cale
e
7.2.3 Additional Quality Enhancements

Filtering, especially 4-tap filtering, on a number of surface formats is now possible. T
are shown in the previous table. In addition, when using a 4-tap filter to scale 1:1 or a
it is now possible to add a sharpening special effect. The new 4-tap filters support
extended coefficients that allow sharpening filters to be programmed as well as the
traditional 4-tap filters and spatial-resampling filters.

As an additional benefit of moving to a 128-bit wide memory system, the quality has
improved when dropping pixels to scale down horizontally. Both the RAGE PRO and
RAGE 128 have sufficient filtering power to scale down an image by 50% without
dropping pixels; however, below 50%, pixels are dropped. When pixels are dropped
aliasing can occur. This is especially apparent if the source image contains an image
a fine repeating pattern (e.g. striped shirt or text).

The following diagram (Figure 7-1.) shows the RAGE 128’s improvement in the
pixel-dropping technique. This figure compares the RAGE 128 to its predecessor, the
RAGE PRO.

• The vertical axis shows the quality of down scaling. As more pixels are dropped
row, the lower the quality of the down-scaled image.

• The horizontal axis shows the down-scale ratio.

RAGE 128 can selectively drop either Y or UV pixels. Between 1/2 to 3/8 horizontal s
ratio, the RAGE 128 will drop the UV pixels, but not the Y pixels. Thus, aliasing of fin
patterns will be avoided in this range.

YUV12
Up Y Y Y Y (new +uv) Y (new)

Down Y Y Y Y (new +uv) N

YUYV
Up Y Y Y Y (new +uv) Y (new)

Down Y Y Y Y (new +uv) N

UYVY
Up Y Y Y Y (new +uv) Y (new)

Down Y Y Y Y (new +uv) N

Note: Y = YES, N = NO, new = new feature.

Table 7-1 Supported Modes (Continued)

Mode Scaling
Type of Filtering

Pick Nearest 2-Tap Horz 2-Tap Vert 4-Tap Horz 4-Tap Vert
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-7

Back-End Overlay and Scalar

ry

pt.

ap is
Below 3/8, when the RAGE 128 starts dropping Y pixels in order to down-scale, eve
second pixel is dropped rather than every second pair of pixels. This also improves
quality, especially for text.

The following diagram (Figure 7-2.) shows the images that demonstrate the this conce

• The top image shows the original text.

• The middle image is what the RAGE PRO starts with at 1/4 scaling.

• The lower image is what the RAGE 128 starts with at 1/4 scaling.

The vertical bars to the left show the relative coarseness with which the original bitm
sampled.

• The upper “grill” samples two pixels, then drops two pixels.

• The lower “grill” uses every second pixel, and thus preserves finer detail of the
original image).

Downscale
Quality

(measured by the
of missing Y
pixels in a row)

Horizontal Scale Ratio

0 Dropped

1 Dropped

2

4

8 Dropped

1:1 1/2 3/8 1/4 3/16 1/8 3/32 1/16

Better Quality

Rage Pro

Rage 128

Figure 7-1. Scaling Quality Improvement
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
7-8 Proprietary and Confidential

Back-End Overlay and Scalar

ess of
the

ed.
deo

down
tical

p to
e,
ffer.
ucts

g the

le to

o
This feature allows an end user to display video in a small window (e.g. a video
conference). The user can choose to simultaneously view a stock ticker or the progr
a meeting, and use most of the desktop for regular work activities. With RAGE 128,
window can be much smaller before problems occur, such as motion aliasing (i.e. flicker)
and readability.

If the memory system can provide enough bandwidth, vertical downscaling is improv
Previous ATI products were limited in that they could only fetch one line of source vi
for every line output to the display. In the RAGE 128, the number of lines fetched is
programmable from one to four. Thus, in many display modes, it is possible to scale
vertically by a significant amount without dropping any lines. Remember that the ver
scalar is a 4-tap filter that drops down to a 2-tap filter when it is pushed to extremes.

If the scalar is simultaneously downscaling horizontally and vertically, then it may dro
2-tap in order to avoid dropping pixels horizontally. Likewise, if the source is very wid
then it will drop to 2-tap to increase the length of line that can be stored in the line bu
Even in 2-tap mode, the vertical filtering will be about twice as good as previous prod
when the scalar can read in two or more lines.

If the video arrives via the RAGE 128 capture port, there is a horizontal capture
downscalar that will also downscale video with high quality. The capture engine’s
high-quality horizontal scalar and the back-end scalar can split the job of downscalin
video to achieve a very high level of overall quality.

If the source lines are pre-downscaled during capture, the back end scalar will be ab
fetch up to four new lines per output line and apply the 4-tap vertical filtering to these
lines. This means that the quality of the vertical downscaling will be excellent down t
1/4th the un-scaled size, and reasonably good below 1/4.

Figure 7-2. Quality Comparison between Filter Techniques

Original Image

RAGE PRO Image

RAGE 128 Image

Relative Coarseness
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-9

Auto-Flipping and Advanced Deinterlacing

ll as

 up

out

 field

ds
7.3 Auto-Flipping and Advanced Deinterlacing
The RAGE 128 supports buffer flipping between and up to six buffers in packed modes
and between two buffers in planer modes.

It also supports both bob and weave, but now the scalar will perform weaving as we
the capture hardware, and a full suite of bobbing and weaving modes is supported.

The RAGE 128 supports the following features:

Hop - one foot on the ground, other not used

• Where only the even or only odd fields are shown.

• Hop is best used for displaying freeze frame fields from a VCR. It produces the
fewest artifacts when the two provided fields do not match.

Run - one foot on the ground at a time, alternating feet

• Where both fields are shown one at a time. During scaling, the even and odd
fields are positioned independently so that the resulting image does not bob
and down.

• Run is a good default mode. It has the most tolerable set of artifacts over the
entire range of video content. It is a good choice when reliable knowledge ab
the type of content is not available.

Jump - both feet on the ground, both move together

• Where two fields are weaved, but both fields are updated at the same time.

• Jump is best applied to video captured at a frame rate equal to half the video
rate, such as film converted to PAL/SECAM (except PAL M) video. Some video
is captured this way to improve slow motion replay.

• Jump may or may not weave compatible fields together. It will look good if is
initiated so that the woven fields are compatible.

Walk - both feet on the ground, move separately

• Where two fields are weaved, but each field is updated as it arrives.

• Walk weaves fields together without regard for compatibility and updates fiel
as often as possible.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
7-10 Proprietary and Confidential

Auto-Flipping and Advanced Deinterlacing

es
in a

d.
can
Marriage Walk - both feet on the ground, field pairs are compatible

• Where only compatible fields are paired and weaved together. Display updat
may occur any time provided that the resulting display image does not conta
mix of incompatible fields.

• Marriage Walk can be used if information about the compatibility of fields is
available. If the content is suitable, and if fields can be correctly paired, the
feathering artifact caused by weaving fields containing motion can be avoide
With Marriage Walk, the vertical resolution of video on a progressive display
be doubled over what is possible with Hop or Run.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-11

Overlay Autonomous Updating

nlock
lar

en
w set
these

ous
7.4 Overlay Autonomous Updating
In order to solve past difficulties with making update-overlay commands execute
autonomously, more registers have been double buffered and provided with a lock/u
mechanism. This insures that a user will not notice any artifacts associated with sca
registers being partially updated when properties of the video window are changed.

Previously, only the scalar position could be updated autonomously. Now it will be
possible to change the position, scale ratio, and source surfaces autonomously.

The address and pitch registers can be updated autonomously by alternating betwe
subsets of the six address registers and two pitch registers. After programming a ne
of values in unused address and pitch registers, software can point the hardware to
registers through a submit field mechanism which is lockable. Thus the submission of a
field and thus the change of the address and position can be included in an autonom
update of the overlay.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
7-12 Proprietary and Confidential

Synchronizing Decoded Video Streams to the Display Refresh

h
 with

le

order
.

 an

ace
e has

s

rlay
7.5 Synchronizing Decoded Video Streams to the Display Refres
To assist in a video-coded running in software so that synchronization is maintained
the display refresh, feedback will be provided to the driver to indicate whether the
hardware began a new display refresh during the locked update.

If a software codec expects to be able to update the overlay properties within a sing
display refresh, this feedback mechanism will provide a sanity check to reassure the
software that it did in fact complete it’s update without dropping a frame.

7.5.1 GUI Stall Mechanism

When buffering frames of video, it may become necessary to stall the GUI engine in
to prevent the active front buffer from being overwritten to quickly with a future frame

• If the codec determines that there is a possibility of this happening, it can enable
interlock mechanism which will temporarily stall the creation of this frame by the
GUI engine.

• To enable this mechanism, a WaitUntilEvent command must precede the frame
rendering commands in the GUI instruction queue.

The intent here is for the overlay to be able to tell the GUI that it is still using the surf
that the GUI wants to render to even though from the software perspective that surfac
been flipped and in no longer the front buffer.

What is proposed is that the overlay will send an OV0_SURFACE_IS_FREE signal to the
GUI. It will make this signal go low when there is a danger of front buffer overwrite a
determined by software.

There will be a new register bit called OV0_STALL_GUI_UNTIL_FLIP . If software
wants to stall the GUI, then it will set this bit when if locks, updates, and unlocks ove
and subpicture registers. OV0_SURFACE_IS_FREE will go low at unlock and then high
during VBlank (when the hardware double buffering flips the registers).

• Note that the behavior of OV0_SURFACE_IS_FREE is undefined if
OV0_STALL_GUI_UNTIL_FLIP is written to when the lock bit is not set.
Hardware sims will not send X's after reset however.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-13

Synchronizing Decoded Video Streams to the Display Refresh

In the CCE/GUI environment, the event is EVENT_OV0_FLIP. The event happens when
bit goes high. Upon a release (clearing of OV0_LOCK), bit is cleared. After the writes take
(i.e. the pageflip is visually complete to the user), this bit is set.

OV0_SURFACE_IS_FREE is technically not an event trigger. If it is low, the
WaitUntilEvent command must stall the GUI until it is high. It does not wait until the
signal transitions from low to high (i.e. if it is already high, there is no stall).
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
7-14 Proprietary and Confidential

Programming the Scalar

y is a
le

o
ve to

f this

est

e

t a
ar

 done
. It is

ental
7.6 Programming the Scalar

7.6.1 Overview

Setting up the parameters that define how a rectangle will be mapped onto the displa
problem that is in some ways similar to setting up the renderer to define how a triang
will be mapped into a rendering surface. Obviously, there are differences.

For example, the scalar doesn’t have to do perspective correction, but it does have t
perform 4x4-tap filtering and to minimize any spatial aliasing. The scalar does not ha
support a Z buffer, but it does have to support many different surface formats.

7.6.2 Setup

Some setup of the scalar needs to be done in software before it can be used. Part o
setup is simply related to determining the increments that must be used for scaling.
Another part concerns reconfiguring the filter engines (based on a table lookup) to b
focus the filter engine’s scaling power for the task.

7.6.3 Bandwidth

We have to consider the memory bandwidth that is required by the two video-captur
ports, as well as the possibility of having wider (HDTV) formats that require more
bandwidth per line. Handling the bandwidth problem isn't all that hard. There are jus
few steps which will be explained in the following subsection. Another aspect of scal
setup is the generation of the filter coefficients. Another subsection that follows will
discuss this topic.

7.6.4 Managing Bandwidth

Registers affected:

• OV0_REG_LOAD_CNTL

• OV0_SCALE_CNTL

Information must be gathered to feed into the bandwidth calculations. This should be
by reading the required registers and returning all of the parameters that are needed
very important that, for some of these parameters (such as the CRTC_HTOTAL), the driver
insures that the parameter either will remain static or at least not change in a detrim
way.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-15

Programming the Scalar

h
till in

ake

st
ks,

d,
ar on,
lay

odes.
 will

it is
.

 the
xtra

ine
)

cal. It
n to

h
t of
For example, if the user wants to resize the CRTC:

• Either that application must prevent the CRTC_HTOTAL from shrinking to the point
that the scalar is starved, or

• It must update the overlay when it shrinks the overlay to this point.

After the relevant information is gathered, the bandwidth routines are called.

The first routine, CalcFetchStartPoint, determines the earliest point in time that line fetc
requests can be made without overwriting a portion of the previously fetched that is s
use. The information that is returned must be programmed into the H_LOAD_CMP field of
the OV0_REG_LOAD_CNTL register. The scalar’s OV0_SCALE_CNTL and
OV0_PROGMBL_LOAD_START bit must be set to one as well.

This routine contains a formula that calculates how much time (in pixel clocks) it will t
to fill the line buffer in the best case. The fetch generation latency and the minimum
memory latency are added to this time to generate the lead time. The lead time is
subtracted from the point in the horizontal timing that the scalar is finished with the la
line. A little bit of margin is added for safety. The result is converted to character cloc
and programmed into the H_LOAD_CMP field.

The second routine, LineFetchSetup, determines how many lines of data can be fetche
and what it takes to fetch those lines. In order to realize a display mode with the scal
it must be possible to fetch at least one line of video source data for each line of disp
data. Do this calculation to insure support for some of the higher resolution display m
In lower-resolutions modes (where there is more bandwidth available), the calculation
tell you if it is possible to read in more than one video source line per display line. If
possible, then the quality of the video when downscaling will be markedly increased
More importantly, the scalar will be compliant with Microsoft’s downscaling quality
requirements in these modes.

The LineFetchSetup routine is made up of a number of simple formulas that tally up
memory cycles consumed by other higher priority clients in the worst case and add e
cycles for page misses. This is subtracted from the total number of cycles to determ
what is left for the scalar. This remaining bandwidth limits the number of lines (if any
that can be fetched. It calculates a value called OV0_BURST_PER_PLANE that controls
the frequency at which Y, U, and V fetches alternate in planer modes. In the
higher-resolution display modes with high refresh rates, this parameter becomes criti
also becomes critical to reduce the size of the display FIFO buffer from 64 entries dow
probably 48 entries. Either way, the remaining bandwidth drives a table look up whic
dictates the setting of a just a few fields that affect the fetch behavior and the amoun
bandwidth consumed.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
7-16 Proprietary and Confidential

Programming the Scalar

w
nd

the

ure
. The
7.6.5 Physical Scaling Ratios

Once the bandwidth issue is resolved, the next step is to determine the vertical and
horizontal scaling ratios that are required from the scalar. These ratios are basically
functions of the source and destination window dimensions. However, there are a fe
mode-specific parameters (such as the type of deinterlacing, the pixel clock speed, a
whether the CRT is in interlaced mode or not) that influence the calculation. As well
source window dimensions may be affected by the addition of black borders.

7.6.6 Setting up the Horizontal Accumulator

Registers affected:

• OV0_H_INC

• OV0_STEP_BY

• OV0_P1_H_ACCUM_INIT

• OV0_P23_H_ACCUM_INIT

Next, there is a table based lookup (mentioned earlier) that determines how to config
the scalar filter engines and pixel dropping hardware to achieve the required scaling
table lookup is presently implemented in a function called Calc_H_INC_STEP_BY in
the file ov1calch.c . This function’s prototype is provided below:

Example Code: Setting up the horizontal accumulator
Calc_H_INC_STEP_BY(

ov0field->val_OV0_SURFACE_FORMAT,

H_scale_ratio,

DisallowFourTapVertFiltering,

DisallowFourTapUVVertFiltering,

&ov0field->val_OV0_P1_H_INC,

&ov0field->val_OV0_P1_H_STEP_BY,

&ov0field->val_OV0_P23_H_INC,

&ov0field->val_OV0_P23_H_STEP_BY,

&P1GroupSize,

&P1StepSize,

&P23StepSize

);

P23GroupSize = 2; // Current value for all modes

Calc_H_INC_STEP_BY will return values that should be programmed into the
following fields:
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-17

Programming the Scalar

rs in
rs.

a
he

p

e

n

ode.

 the

e.
• OV0_P1_H_INC

• OV0_P23_H_INC

• OV0_P1_H_STEP_BY

• OV0_P23_H_STEP_BY, as well as some additional information.

These fields control two horizontal accumulators, and address generation logic that
fetches pixels from the line buffers to feed the vertical filter engine. These accumulato
turn generate pixel and line shift signals as well as blend ratios for the horizontal filte

Calc_H_INC_STEP_BY will determine first if the vertical filters must be put in 2-tap
mode or 4-tap mode.

• In 4-tap mode, the filters will blend using a more advanced 4-tap filtering kernel.

• In 2-tap mode, the filter engine blends using a less sophisticated liner filter (alph
blend), but it generates twice as many pixels per clock (three times as many in t
case of RGB15/16).

There are a number of reasons why the filters should be put in the lower quality 2-ta
mode. These are:

• Source is wider that 768.

• Source is RGB15/16 which doesn’t have a four tap option.

• The vertical filters can’t keep the horizontal filters supplied with pixels because th
horizontal scaling ratio is too low.

When down scaling, it is better to drop from 4-tap filtering to 2-tap filtering, rather tha
drop pixels.

If the downscaling ratio is large, then the vertical filters can’t keep up even in 2-tap m
When this happens it becomes necessary to drop pixels.

The accumulators and shifters require initialization values that are also a function of
scaling ratio. These initialization values consist of two parts:

• OV0_P1_H_ACCUM_INIT and OV0_P23_H_ACCUM_INIT are used to initialize
the accumulators.

• OV0_PRESHIFT_P1_TO and OV0_PRESHIFT_P23_TO are used to preshift the
right amount of data into the horizontal filters at the beginning of each display lin
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
7-18 Proprietary and Confidential

Programming the Scalar

.
The following lines of code (taken from ov0setup.cpp) program these fields correctly

Example Code: Setting up the horizontal accumulator
tempAdditionalShift = ov0field->val_OV0_P1_X_START % P1GroupSize;

if (ov0param->HORZ_PICK_NEAREST) {

tempP1HStartPoint = tempAdditionalShift + 3.0 +
(float)ov0field->val_OV0_P1_H_INC / (1<<0xd);

}

else {

tempP1HStartPoint = tempAdditionalShift + 2.5 +
(float)ov0field->val_OV0_P1_H_INC / (1<<0xd);

}

tempP1Init = (double)((int)(tempP1HStartPoint * (1<<0x5) + 0.5)) /
(1<<0x5);

// P23 values are always fetched in pairs. If the start pixel is odd,
then we need to shift an additional pixel

// Note that if the pitch is a multiple of two, and if we store fields
using the traditional planer format where

// the V plane and the U plane share the same pitch, then
ov0field->val_OV0_P2_X_START % P23GroupSize should equal

// ov0field->val_OV0_P3_X_START % P23GroupSize. Either way it is a
requirement that the U and V start on the same

// polarity byte (even or odd).

tempAdditionalShift = ov0field->val_OV0_P2_X_START % P23GroupSize;

if (ov0param->HORZ_PICK_NEAREST) {

tempP23HStartPoint = tempAdditionalShift + 3.0 +
(float)ov0field->val_OV0_P23_H_INC / (1<<0xd);

}

else {

tempP23HStartPoint = tempAdditionalShift + 2.5 +
(float)ov0field->val_OV0_P23_H_INC / (1<<0xd);

}

tempP23Init = (double)((int)(tempP23HStartPoint * (1<<0x5) + 0.5)) /
(1<<0x5);

ov0field->val_OV0_P1_H_ACCUM_INIT = (int)((tempP1Init -
(int)tempP1Init) * (1<<0x5));

ov0field->val_OV0_PRESHIFT_P1_TO = (int)tempP1Init;

ov0field->val_OV0_P23_H_ACCUM_INIT = (int)((tempP23Init -
(int)tempP23Init) * (1<<0x5));

ov0field->val_OV0_PRESHIFT_P23_TO = (int)tempP23Init;
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-19

Programming the Scalar

hat
 will
d up
e
.

d

ge)

el and
e.
7.6.7 Setting up the Destination Window

Registers affected:

• OV0_Y_X_START

• OV0_Y_X_END

• OV0_EXCLUSIVE_HORZ (indirectly)

• OV0_EXCLUSIVE_VERT (indirectly)

The destination window coordinates are specified using ‘inclusive’ display pixel
coordinates. There are horizontal restrictions when the pixel clock is running faster t
the scalar’s maximum clock of 125MHz. In this case, the scalar’s destination window
always start on the correct pixel, but the total number of pixels across will be rounde
to the nearest multiple of two. For most applications this is not a problem because th
overlay is only displayed where the key color is, and thus the extra pixels are hidden

7.6.8 Setting up the Source Window

Registers affected:

• OV0_P1_BLANK_LINES_AT_TOP

• OV0_P23_BLANK_LINES_AT_TOP

• OV0_VID_BUF*_BASE_ADRS

• OV0_P*_X_START_END

The scalar can zoom in on a source window with pixel accuracy. The zoom region is
referred to as the view window. Any source data outside the view window will be replace
with black. The filter engine will blend black pixels with source pixels for the best
possible quality at the edges.

The top of left corner of the view window (e.g. the viewing window into the source ima
is approximately defined by the OV0_VID_BUF*_BASE_ADRS field of the
OV0_VID_BUF*_BASE_ADRS register. This field points to the octword that contains
the top left pixel in the viewing window.

The memory system and the scalar handle data in octwords. Thus, both the start pix
end pixel in a line are specified relative to the beginning of the first octword in the lin
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
7-20 Proprietary and Confidential

Programming the Scalar

2
plane

 to
re

 lines

ring
e

els

then
ount
The exact starting pixel in the first octword is defined by the OV0_P*_X_START field in
the OV0_P*_X_START_END register.

The last pixel is specified by the OV0_P*_X_END field in the OV0_P*_X_START_END
register. The P in OV0_P*_X_END stands for ‘Plane’. P1 represents the Y plane, P
represents the U plane (and sometimes also the V plane), and P3 represents the V
(and sometimes it’s not used).

Vertically, it is possible to have the scalar add black boarders (additional black lines)
the video image without having to write them into the frame buffer. These boarders a
needed for the MPEG letterbox mode. This is done by indicating the number of black
required at the top and the height of the ‘active’ portion of the video.

Note that black lines require no read bandwidth, and thus they are never dropped du
downscaling. Thus, if the image is predecimated by doubling the pitch, also adjust th
number of black lines to be added.

7.6.9 Calculating the Filter Coefficients

Registers affected:

• OV0_FILTER_CNTL

• OV0_FOUR_TAP_COEF_*

To understand how to create suitable coefficients four a spatial resampling filter, you’ll
need to understand some background in spatial resampling. Spatial resampling means
scaling. Scaling is done by interpolating new pixels from nearby pixels in an original
source image. This interpolation is generally performed by multiplying the nearby pix
by filter coefficients, summing the results, and then dividing by the sum of the
coefficients.

Video images tend to be band limited (i.e. separable filters can be used).

• Band-limited video means that there are no frequencies in the image above the
maximum frequency that the raster can accurately represent.

• Separable filter means that first the image is filtered in the vertical direction and
in the horizontal direction. Separating the filtering into two steps reduces the am
of math, and thus the amount of signal processing, that the scalar must perform.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-21

Programming the Scalar

 from
lates

et

et of

rts 8
, and
s for
ra

hs of
ieve
e

ction

you

 with
The RAGE 128 Back-End scalar uses separable 4-tap filters to interpolate new pixels
a 4x4 region of nearby source pixels. First it interpolates vertically, and then it interpo
horizontally.

The scalar allows you to select whether to use either hard-coded set or a programmable s
of coefficients for each of the main scaling operations. The scaling operations are:

• Vertical Y Scaling

• Vertical UV Scaling

• Horizontal Y Scaling

• Horizontal UV Scaling

The OV0_FILTER_CNTL register allows you to control the selection.

A given set of filter coefficients are useful for interpolating a pixel at a given position
between source pixels. For example, the coefficients {-0.1, 0.6, 0.6, -0.1} would
interpolate a pixel that was 50% of the way between the second and third pixel in a s
four.

For each position, a different set of four coefficients is needed. The RAGE 128 suppo
possible positions, or “phases”. They are 0%, 12.5%, 25%, 37.5%, 50%, 62.5%, 75%
87.5% of the way between the second and third pixel in a set of four. The coefficient
the three last positions are mirror images of the 2nd, 3rd, and 4th positions, thus ext
registers for these values are not needed.

The hard-coded coefficients are suitable for upscaling, or downscaling slightly (9/10t
the original). To downscale below 90%, different filter coefficients are needed to ach
the best quality. Thus, if one scaling operation is performing a downscale, it should b
assigned the programmable coefficients. The coefficients should computed as a fun
of the scaling ratio and the sharpness control setting.

If more than one scaling operation is downscaling, either they must share the set of
programmable coefficients, or one of them must use hard-coded coefficients. When
examine all the possibilities, you’ll discover that programmable coefficient contention
isn’t a large problem.

If no scaling operations are downscaling, all of the scaling operations can use the
programmable coefficients, and these coefficients can be programmed for upscaling
a sharpness control.

All the coefficients values for a given position (or phase) must add up to 32.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
7-22 Proprietary and Confidential

Programming the Scalar

ed by
lable

ore
is

 the
re
n only
7.6.10 Setting up the Vertical Accumulator

Registers affected:

• OV0_V_INC

• OV0_P1_V_ACCUM_INIT

• OV0_P23_V_ACCUM_INIT

• OV0_VID_BUF_PITCH0_VALUE (indirectly)

• OV0_VID_BUF_PITCH1_VALUE (indirectly)

The vertical-scaling ratio determines the value of a vertical increment value that is us
the vertical accumulator. If you indicate to the hardware that there is bandwidth avai
to fetch in more than one line each Hblank (by programming the
OV0_P1_MAX_LN_IN_PER_LN_OUT and OV0_P23_MAX_LN_IN_PER_LN_OUT
fields), the scalar will fetch more than one line if necessary; otherwise, it will
automatically drop lines when scaling down.

For large vertical downscaling ratios there may be cases when the scalar can fetch m
than one line, but not all the lines it needs to downscale without dropping lines. In th
case the scalar may end up dropping lines in clumps. If this situation happens, then the
driver should predecimate the image vertically by doubling, tripling, quadrupling, etc.
pitch that it uses to program the scalar. This will spread out the groups of lines that a
fetched and reduce the size of the gaps in the source image. Note that if the scalar ca
fetch one line per HBlank, then there is no “group of lines” to spread out.

The exact vertical position must be tweaked by setting the OV0_P1_V_ACCUM_INIT
and OV0_P23_V_ACCUM_INIT fields. These registers initialize the vertical
accumulators so that the image will be properly aligned.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-23

Programming the Scalar

f your
ally
scalar

cond
e

,
7.6.11 Autonomous Update

Registers affected:

• OV0_REG_LOAD_CNTL.*LOCK*

• OV0_SCALE_CNTL.OV0_DOUBLE_BUFFER_REGS

If a new display refresh were to start (while changing some scalar registers), some o
changes would be in effect and others would not. The current refresh would be parti
updated and may appear distorted. To prevent this from happening, many important
register fields have been double buffered.

A double buffered register field has a register field that the driver can modify and a se
internal register field that the hardware uses. The driver’s register field is copied to th
hardware’s register field at the start of the display VBlank if the
OV0_REG_LOAD_CNTL.OV0_LOCK bit is not set.

To update autonomously, you must:

1. Set the OV0_REG_LOAD_CNTL.OV0_LOCK bit

2. Check that the hardware saw that this bit was set by polling
OV0_REG_LOAD_CNTL.OV0_LOCK_READBACK until it goes high.

3. Update any double buffered registers that require updating.

4. Update the OV0_VID_BUF_PITCH0_VALUE register that is not in use if needed.

5. Update one (or three for planer modes) OV0_VID_BUF*_BASE_ADRS register(s) if
needed.

6. Submit a field or frame if OV0_VID_BUF_PITCH0_VALUE or
OV0_VID_BUF*_BASE_ADRS was modified. The submission is double buffered
even though the OV0_VID_BUF* registers are not.

7. Unlock the registers by resetting the OV0_REG_LOAD_CNTL.OV0_LOCK bit.

To find out if a VBlank occurred while you had the registers locked, read the
OV0_VBLANK_DURING_LOCK field.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
7-24 Proprietary and Confidential

Programming the Scalar

rt, or

 is a

ar

he
7.6.12 Autoflipping and Advanced Deinterlacing

Registers affected:

• OV0_AUTO_FLIP_CNTL

• OV0_DEINTERLACE_PATTERN

To use autoflipping and advanced deinterlacing, a video provider (either a capture po
software application) must be selected by the overlay using the
OV0_VID_PORT_SELECT register field. This video provider must submit fields to the
back end video scalar.

To submit a field, a small structure is filled out that indicates:

• Which OV0_VID_BUF?_BASE_ADDRESS(es) point(s) to the new field.

• Whether the field is even or odd (for non-planer surfaces), and if the current field
repeated field (if the video follows a 3:2 pulldown pattern).

A software application provides this information by writing to fields in the
OV0_AUTOFLIP_CNTL register, and then toggling a bit (change it to ‘0’ if it is ‘1’, or
change it to ‘1’ if it is ‘0’). The video capture hardware talks directly to the video scal
hardware through a similar mechanism.

The scalar keeps a record of the last three submissions from each video provider. T
scalar can be directed to apply any of the above deinterlacing techniques (described
below) to the fields that are submitted.

A record of each video provider’s submissions is kept by shifting the submission
information into registers. Theses are referred to as the Next register, the Curr register,
and the Prev register, where:

• Next is the most recent

• Curr is the second most recent

• Prev in the third most recent.

The OV0_VID_PORT_SELECT the register selects, which active video provider’s
submissions are dedicated to the deinterlace control block.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-25

Programming the Scalar

s one

ow
cted

le:

cent

e

ld
at.
The repeat-field information is not recorded, but instead it is used immediately. It can
reset the Deinterlace Pattern Pointer (which, BTW, is readable via
OV0_DEINT_PAT_PNTR). Normally, the Deinterlace Pattern Pointer will increment
every time that a field is submitted by the selected video provider. This pointer select
of up to ten Deinterlace Pattern Directives that are stored in the OV0_DEINT_PAT
register field.

The deinterlace control block establishes what surfaces the scalar will pick up and h
they will be combined to create a display frame. The deinterlace control block is dire
by the 2-bit Directive Value to do one of four actions. The decoding is as follows:

1. Weave the Next field with the Curr field.

2. Weave the Curr field with the Prev field.

3. Bob the Next field.

4. Bob the Curr field.

Different patterns can be used to achieve different types of deinterlacing. For examp

• OV0_DEINT_PAT = 0xAAAAA (i.e. ten ‘2’s)

• Indicates bob with the most recent field.

• OV0_DEINT_PAT = 0xFFFFF (i.e. ten ‘3’s)

• Indicates bob with the second most recent field.

• OV0_DEINT_PAT = 0xEEEEE (i.e. 3232323232)

• Indicates bob using the second most recent field alternating with the most re
field. Causes that single-field mode to occur.

• OV0_DEINT_PAT = 0x00000 (i.e. ten ‘0’s)

• Indicates weave using the most recent two fields. Causes 50/60 frames to b
displayed per second.

• OV0_DEINT_PAT = 0x11111 (i.e. 0101010101)

• Indicates weave by using the most recent two fields. Then, when the next fie
arrives, it uses the 2nd and 3rd most recent fields (the same two). Then repe
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
7-26 Proprietary and Confidential

Programming the Scalar

 per

ern

 the

any

lly

eave,

told

en
 risk

re
 will
n
ion.

ne of
This weaves pairs of even and odd fields and displays the pairs at 30 frames
second.

• OV0_DEINT_PAT = 0x04411 (i.e. 0?1010?101, where '?' = don't care = 0).

• This pattern will weave fields in a way that will undo a 3:2 pull down. The patt
will need to be rotated to match the phase of the incoming video's pulldown
pattern. If a repeat field indication is available, then this can be used to sync
pattern with the incoming video.

Currently, the length of the pattern is programmable, but there doesn’t appear to be
good reason to program it to less than the maximum value of ‘9’. The current pointer
value can be read and this information can be helpful if the driver needs to dynamica
change the pattern or style of deinterlacing on the fly. To switch between bob and w
change the vertical scaling ratio as well in a single autonomous operation.

Because fields are labeled even or odd as they are submitted, the hardware can be
how to position even fields with respect to odd fields. When bobbing, the fields
OV0_SHIFT_EVEN_DOWN and OV0_SHIFT_ODD_DOWN are used.

• When set, appropriately labeled fields will be shifted by one half source line.

• When weaving, the OV0_FIRST_LINE_EVEN will control an even field’s
positioning relative to an odd field’s.

Avoid allowing a software application from weaving together an even field with an ev
field, or an odd field with an odd field. Never use weave on captured data if there is a
that the capture hardware will submit two fields of the same type in a row.

The video capture ports are not designed to provide planer data. However, a softwa
application, such as a hardware-assisted MPEG decoder, will provide planer data. It
not be necessary to weave planer data with planer data. Even with field based motio
compensation, the data will be manipulated in the frame buffer in a pre-weaved fash

• To achieve weave deinterlacing, read frames directly out of the frame buffer.

• To achieve bob deinterlacing, read every second line of the Y frame and every li
the UV frames.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-27

Color Controls
7.7 Color Controls
The Color controls in the RAGE 128 are the same as RAGE PRO.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
7-28 Proprietary and Confidential

Keying Controls

r key
ey is

 is 24
alue
ask
. For
t be

TL.
7.8 Keying Controls
The following registers are used to enable color keying with respect to the overlay:

• OV0_KEY_CNTL

• OV0_VIDEO_KEY_CLR

• OV0_VIDEO_KEY_MSK

• OV0_GRAPHICS_KEY_CLR

• OV0_GRAPHICS_KEY_MSK

As noted above, there are color keys for both graphics and video. The graphics colo
applies to data that is retrieved from the engine or the frame buffer. The video color k
applied to data that originates from the capture buffer(s). Overlay key-color registers
bits wide, while the display key-color registers and key mask are 32 bits wide. The v
of the color key should be entered as it applies to the current graphics mode. The m
registers should be set up to mask out the bits that you will not use in your color key
instance, in 16 bpp-mode (565), bits [16] to [31] should be masked out, as we will no
using those bits when comparing the source data against the destination.

OV0_VIDEO_KEY_FN @ OV0_KEY_CNTL and OV0_GRAPHICS_KEY_FN @
OV0_KEY_CNTL determine how the color keys are applied. It is also possible to
compare the graphics and video outputs by using OV0_CMP_MIX @ OV0_KEY_CN
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-29

Tabulating Cycles in the HBlank

r
 be a

he

nto
ior of
oller

e

f the
ext

’t
7.9 Tabulating Cycles in the HBlank
The scalar is limited by the number of cycles available in its VBlank. If too many othe
real-time clients are active and making requests in the worst possible way, there will
minimal amount of time for the scalar to fetch the data it needs to get started. This
sub-section explains how to determine how many cycles are left for the scalar if all t
other clients are engaged in worst case behavior.

7.9.1 Part 1

First, we must determine the earliest point that data transfers from the frame buffer i
the scalar-line buffer can occur. This point actually depends on the best-case behav
the memory system. If the first request is serviced immediately by the memory contr
and the data is returned without any page faults, the data will arrive at the earliest tim
possible. The data must not overwrite data from the previous line that is still in use.

The scalar actually starts and finishes reading lines from its line buffer a little ahead o
actual display timing due to the hardware’s pipeline delay. The line buffer fill for the n
line can begin before the current line has finished being read, provided that it doesn
overwrite the end of the current line. Figure 7-3. shows the fetch request beginning as
early as possible.

HActive

HBlank

Overlay
Line Buf

Read Pntr

Overlay
Line Buf

Write Pntr

Fetch
Request

Minimum Latency

Maximum Fill Rate

Pipeline Delay

Calc_H_LOAD_CMP trigger

Figure 7-3. The fetch request beginning as early as possible
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
7-30 Proprietary and Confidential

Tabulating Cycles in the HBlank

nd V

een

 fixed

es

 to

ion
tch
to a
For planer fetches, the fill rate can be faster in the best case (when only lines of U a
are fetched). The fetch may alternate between the U and V planes. To accurately
determine how soon the fetch can begin, take into account how often switching betw
the planes will occur.

There are two switching mechanisms.

• One method causes a switch to occur to the plane that has the least data after a
burst size in octwords. The OV0_BURST_PER_PLANE field in the
OV0_SCALE_CNTL register defines this burst size.

• Another method is by enabling OV0_SMART_SWITCH. This mechanism causes the
switch to occur at page boundaries, and makes the switch to a plane that is in an
opposite memory bank.

In tiled mode, page boundaries occur frequently. Page faults are hidden when switch
between Y, U, and V planes occur.

If the switching behavior can be accurately described in a formula, it will be possible
begin fetching at the earliest possible point in time. Currently, the start point is
conservatively determined (by the CalcScalarHBlank function) using the assumption
that a whole line of U data is fetched, followed by a whole line of V data.

7.9.2 Part 2

The CalcScalarHBlank routine returns the following values:

• EarliestDataTransfer

• LatestDataTransfer

• VCLK_Offset

EarliestDataTransfer (the left most dotted arrow in Figure 7-3.) shows where the start of
the write into the line buffer can occur. There are a several cycles from when
Calc_H_LOAD_CMP triggers a line fetch to when the first-data transfer occurs.

Subtract the minimum memory latency (about 10 cycles) from the scalar’s computat
delay (dependent on the minimum number of lines dropped) to obtain the earliest fe
request from the EarliestDataTransfer point. The earliest fetch request is converted
character clock by dividing by 8 and programmed into H_LOAD_CMP.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-31

Tabulating Cycles in the HBlank

a

etch

rt

ta
The scalar’s computation delay is derived from a formula that uses MinDroppedP1Lines
and MinDroppedP23Lines among other variables. The address generator spends extr
cycles adding the pitch to the line address when there are dropped lines. Thus if the
minimum number of dropped lines is known, the trigger point can be moved a little
earlier. However, the minimum number of dropped lines is not known until after the
bandwidth calculation is complete and a decision is made about how many lines to f
and how many to drop.

7.9.3 Part 3

Find when the scalar will read the first bytes of data. This is the beginning of the Hactive
scalar minus a variable pipeline delay minus 16-ECP cycle-lead time.

• For non-planer modes, this defines the latest point in time that the data must sta
arriving by.

• For planer modes, it defines the latest point in time at which some Y, U, and V da
must have arrived by.

As long as the scalar has some Y, U, and V data in its line buffer, it can get started.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
7-32 Proprietary and Confidential

Tabulating Cycles in the HBlank
D
ip

la
y

A
ct

iv
e

D
is

pl
ay

 B
la

nk
D

ip
la

y
A

ct
iv

e

Worst
Case
Last
FIFO
ReFill

Worst
Case
First
FIFO
ReFill

D
is

pl
ay

FI
FO

Le
ve

l

M
em

or
y

B
an

d-
w

id
th

 U
sa

ge

F
R

F
R

),
)2

3
UH

IL
OO

F
R

D
is

pl
ay

H
W

C
ur

so
r

S
ub

pi
ct

ur
e

V
id

eo
 C

ap
 1

V
id

eo
 C

ap
 2

O
ve

rla
y

F
R

F
R

F
R

F
R

F
R

F
R

F
R

<
F

R

O
ve

rl
ay

 A
ct

iv
e

O
ve

rl
ay

 B
la

nk
O

ve
rl

ay
 A

ct
iv

e

E
ar

lie
st

 O
ve

rl
ay

D
at

a
T

ra
ns

fe
r

sc
al

er
 p

ip
el

in
e

de
la

y

R
F

8
F

R
9

F
R

F
R

F
R

<
F

R
8

F
R

9
F

R

FIFO
PreFill

sc
al

er
 p

ip
el

in
e

de
la

y

16
 E

C
P

 c
yc

le
 l

ea
d

ti
m

e

F
R

F
R

R

A
s

so
on

 a
s

th
e

ov
er

la
y

re
ac

he
s

th
e

ea
rl

ie
st

po
in

t
at

 w
hi

ch
 it

 c
an

 a
cc

ep
t

da
ta

 f
or

 t
he

 n
ex

t
lin

e,
 e

ve
ry

 o
th

er
 h

ig
he

r
pr

io
ri

ty
 r

ea
l t

im
e

cl
ie

nt
de

ci
de

s
th

at
 it

 w
an

t
da

ta
 t

oo
.

A
t

th
is

 p
oi

nt
 t

he
 s

ca
le

r
m

us
t

ha
ve

 r
ec

ei
ve

d
en

ou
gh

 Y
,

U
,

an
d

V
 d

at
a

to
 s

ta
rt

 d
is

pl
ay

in
g

a
lin

e.
 I

n
th

e
w

or
st

 c
as

e,
 t

he
 d

is
pl

ay
 F

IF
O

 a
ls

o
fin

is
he

s
be

in
g

to
pp

ed
 o

ff
 a

t
th

is
 p

oi
nt

,
an

d
th

us
it

 u
se

s
up

 t
he

 m
ax

im
um

 a
m

ou
nt

 o
f

th
e

ba
nd

w
id

th
 in

 t
he

 s
ca

le
r'

s
H

B
la

nk
.

O
ve

rl
ay

R
eq

ue
st

S
ig

na
l

M
in

im
um

 M
em

or
y

La
te

nc
y

E
ve

ry
 a

cc
es

s
be

gi
ns

 w
it

h
a

pa
ge

op
en

 a
nd

 e
nd

s
w

it
h

a
pa

ge
 c

lo
se

 o
f

ty
pi

ca
lly

3

cy
cl

es
 e

ac
h.

 S
om

et
im

es
th

es
e

pa
ge

 o
pe

ra
ti

on
s

ca
n

be
av

oi
de

d
or

 h
id

de
n,

 b
ut

 n
ot

 in
 t

he
w

or
st

 c
as

e.

Figure 7-4. Modeling Worst Case Behavior
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-33

Tabulating Cycles in the HBlank

r

otal

en
 how
As show in Figure 7-4., it is important to model the worst case behavior of all the othe
clients. This figure assumes the following:

• All the clients are turned on.

• All of their accesses will cause page faults.

• Each client will make the maximum number of small accesses to maximize the t
number of page faults.

• The timing of all accesses will be as inconvenient as possible for the scalar.

In Figure 7-4., the scalar is not full-screen width. If it was full width, there would be ev
less time for scalar data transfers. However, then it would not be possible to illustrate
the display’s last and first bursts exhibit worst case behavior.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
7-34 Proprietary and Confidential

Tips for Getting More Bandwidth

its.
t the
AL).

, a

 more

e
y

een)

lar is
that
lines.
7.10 Tips for Getting More Bandwidth
• Turn off the video capture units, or correctly specify the capture rate for these un

Currently, you can report whether the capture port is turned on or off, but not wha
data rate is. The data rate is assumed to be 35MB/s (which is a worst case for P

• If the virtual desktop mode is off and all the display lines are aligned on 64 byte
boundaries, the display accesses will improve and the display bandwidth will
decrease.

• If the hardware cursor is not in use, there will be more cycles left for the scalar.

• The display FIFO size is currently set to 32 Octwords by the BIOS. In some cases
smaller value could be set. While this may reduce the overall memory efficiency
slightly, it would also free up more cycles in the HBlank for the scalar.

• Run both the scalar and the display in tiled mode. In tiled mode, transactions are
likely to dovetail together, and thus memory efficiency will improve. In fact, the
scalar will automatically switch between Y, U, and V fetches in a way that will hid
page turns. It is difficult to be 100% deterministic about how much of an efficienc
gain will be achieved. Thus, any assumption about the benefit of tiling should be
carefully tested.

• If the vertical filter coefficients are programmed so that the last (lowest on the scr
of four lines is always multiplied by a coefficient of zero, you don’t have to worry
about it not being fetched in time for the current display line.

• This only works so long as the vertical filters are in 4-tap mode. They are
generally in this mode when the scalar is short of bandwidth because the sca
scaling horizontally to the full-screen width. The exception to this is sources
are wider that 768 pixels. These sources require the scalar to double up the
This in turn forces the filters into 2-tap vertical filtering mode.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-35

Front-end Scalar

nsfers

sion
een
ame
ay
for this

el is
7.11 Front-end Scalar
The front-end scalar of the RAGE 128 can be used for a few different purposes. As
discussed in Chapter 4, it can be used to performed scaled-interpolated bit-block tra
(i.e. blts).

One of the other important features of the front-end scalar is the color-space conver
capability. While the overlay can be used for this purpose, the major difference betw
the two is that the front-end scalar actually writes the converted data back into the fr
buffer, while the overlay does the conversion at the DAC level. Some applications m
require access to the converted data, thus the front-end scalar would be best suited
task.

The front-end scalar accepts the following input pixel formats:

• 8-, 15-, 16-, 24- and 32-bpp RGB

• 8-bpp RGB332

• Y8 greyscale

• RGB8 greyscale (8 bits of intensity, duplicated for all 4 channels, the RED chann
used for writes)

• 16-bpp: a psuedocolor greyscale (8:8)

• YUV 422 packed (VYUY)

• YUV 422 packed (YVYU)

• aYUV 444 (8:8:8:8)

• aRGB 4444
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
7-36 Proprietary and Confidential

Bus Mastering

ansfer
age.

 the

nto

r to

r

the
en

les. A
7.12 Bus Mastering

7.12.1 Bus Master Operation

The RAGE 128 can act as a bus master. The bus mastering capabilities allows the tr
of data from system memory to the frame buffer and vice versa with minimal CPU us

The RAGE 128 performs two types of transfers:

• System transfers

• A system transfer involves moving memory between the system memory and
frame buffer memory (an visa versa).

• Use a system transfer to move a bitmap that is loaded into system memory i
the frame buffer.

• Use the bus master to move data that was captured into the frame buffer ove
system memory for modification by the CPU or other devices.

• GUI transfers

• A GUI transfer involves moving data from system memory to the frame buffe
through the GUI (or engine).

• Use a GUI transfer (also known as a virtual fifo) to queue up a series of engine
register writes in system memory; then, bus master the list to the GUI using
bus master. If an application constantly performs the same type of blt or scre
setup, use the bus master.

7.12.2 Creating a Descriptor Table

The bus master is instructed where to retrieve data through the use of descriptor tab
descriptor entry consists of four DWORDs, with the following values:

Table 7-2 Descriptor Table

Name Bit Function

DWORD 0
BM_FRAME_BUF_OF
FSET

23:0 Frame buffer offset for data transfer

DWORD 1
BM_SYSTEM_MEM_A
DDR

31:0
Physical system memory address for
data transfer
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-37

Bus Mastering

mory

ace

] and

n
e last

t be

‘1’.
Transfers use the same byte offsets for both the frame-buffer and system-memory
addresses.

• For transfers from system memory, the bus master hardware will use system me
address bits [1:0] for the frame buffer offset bits [1:0].

• For transfers from the frame buffer, frame buffer offset bits [1:0] will be used in pl
of the system memory bits [1:0].

Thus, the source address of the transfer will always dictate the byte alignment bit [1:0
override the destination setting.

A maximum of 4096 bytes of data can be transferred per descriptor. As a result, whe
transferring an image that is larger than 4KB, create a table-of-descriptor entries. Th
entry must have bit [31] of the BM_COMMAND DWORD set to ‘1’ to indicate to the bus
master hardware that this is the last descriptor entry. The entire descriptor table must be in
contiguous memory, and the physical memory address of the head of the table mus
known.

Pseudo Code to set up a Descriptor

1. loop:

2. Write the frame buffer destination offset address to BM_FRAME_BUFF_OFFSET.

3. Write the physical address of the memory to be transferred to SYSTEM_MEM_ADDR.

4. Write the amount of bytes to be transferred to BM_COMMAND (4096 bytes maximum).

5. If this is the last descriptor entry, set bit [31] to ‘1’.

6. If you are writing to one memory address (e.g. for a GUI transfer), set bit [30] to

7. Write a ‘0’ for the reserved DWORD.

8. If there is still more data to be transferred, increment the
BM_FRAME_BUFF_OFFSET and SYSTEM_MEM_ADDR appropriately, and go to
loop to create another descriptor.

DWORD 2 BM_COMMAND

11:0 Count of bytes to transfer (4KB max.)

30 Disable incrementing frame buffer offset.

31 End of descriptor list

DWORD 3 (reserved) 31:0

Table 7-2 Descriptor Table (Continued)

Name Bit Function
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
7-38 Proprietary and Confidential

Bus Mastering

r, the

ing:

but are

rom
sure
 table)

sfer
7.12.3 Setting up a System Bus Master Transfer

When a program requires a transfer of data from system memory to the frame buffe
bus mastering capabilities of the RAGE 128 can be used to allow the CPU to perform
other tasks while the RAGE 128 moves the data into the frame buffer.

The RAGE 128 now allows the use of several different bus mastering buffers, includ

• Three video capture buffers.

• Four VIP buffers.

These buffers do not have to be used for these (capture and VIP transfer) purposes,
customized somewhat to these tasks.

Use the following steps to set up the RAGE 128 to perform a bus-master operation f
system memory to the frame buffer. However, before performing these steps, make
that the descriptor table is set up and the physical memory address (of the descriptor
is paragraph aligned.

1. To enable bus mastering, clear BUS_MASTER_DIS@BUS_CNTL.

2. To enable the interrupt, set BUSMASTER_EOL_INT_EN@GEN_INT_CNTL.

3. To clear the bus master end of a transfer-interrupt set,
BUSMASTER_EOL_INT_AK@GEN_INT_STATUS to ‘1’.

4. Set SYSTEM_TRIGGER@BM_SYSTEM_TABLE to the desired transfer method (‘0’
in this case).

5. Then OR this value with SYSTEM_TABLE_ADDR@BM_SYSTEM_TABLE (the
physical memory address of the head of the descriptor table - the first descriptor
entry).

6. Then, write result to BM_SYSTEM_TABLE. Writing to BM_SYSTEM_TABLE
initiates the bus master operation.

At this point, allow the CPU to perform other tasks. To find out if the bus master tran
is complete, read BUSMASTER_EOL_INT@GEN_INT_STATUS to see if it is set to ‘1’.
A ‘1’ indicates that the transfer is complete. Once BUSMASTER_EOL_INT has been
acknowledged (i.e. set to ‘1’), write a ‘1’ to this bit to clear the interrupt.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential 7-39

Bus Mastering
This page intentionally left blank.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
7-40 Proprietary and Confidential

Appendix A
BIOS Function Calls

A.1 Scope
This section describes the various aspects of the VGA Controller.

A.2 AH = 0; Set Video Mode (AL = Video mode)

Table A-1 For IBM Compatible Modes

AL MODE/TYPE RESOLUTION DIM/COLOR START
ADDRESS

00h color/alpha 640x200 40x25/BW B800h:0

01h color/alpha 640x200 40x25/16 B800h:0

02h color/alpha 640x200 80x25/BW B800h:0

03h color/alpha 640x200 80x25/16 B800h:0

04h color/graphics 320x200 40x25/4 B800h:0

05h color/graphics 320x200 40x25/BW B800h:0

06h color/graphics 320x200 80x25/BW B800h:0

07h mono/alpha 720x350 80x25/BW B000h:0

0Dh color/graphics 320x200 40x25/16 A000h:0

0Eh color/graphics 640x200 80x25/16 A000h:0

0Fh mono/graphics 640x350 80x25/BW A000h:0

10h color/graphics 640x350 80x25/16 A000h:0

11h color/graphics 640x480 80x30/BW A000h:0

12h color/graphics 640x480 80x30/16 A000h:0

13h color/graphics 320x200 80x25/256 A000h:0

Table A-2 For ATI Enhanced Modes

AL MODE/TYPE RESOLUTION DIM/COLOR START
ADDRESS

21h color/alpha 800x400 100x25 B800h:0

22h color/alpha 800x480 100x30 B800h:0
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential A-1

A.3 AH = 1; Set Cursor Type

CH = start line of cursor
CL = end line of cursor
CX = 1F00h to turn off cursor

A.4 AH = 2; Set Current Cursor Position

BH = page number of the desired page
DH, DL = row and column of cursor

A.5 AH = 3; Read Current Cursor Position at the specified page

BH = page number of the desired page
On Exit:
CH, CL = cursor type
DH, DL = row, column of cursor at the specified page

A.6 AH = 4; Read Current Light Pen Position

VGA does not support light pen.

A.7 AH = 5; Select Active Display Page

AL = page number to be active

23h color/alpha 1056x200 132x25/16 B800h:0

33h color/alpha 1056x352 132x44/16 B800h:0

55h color/graphics 1024x768 128x48/16 A000h:0

61h color/graphics 640x400 80x25/256 A000h:0

62h color/graphics 640x480 80x30/256 A000h:0

63h color/graphics 800x600 100x42/256 A000h:0

64h color/graphics 1024x768 128x48/256 A000h:0

6Ah color/graphics 800x600 100x42/16 A000h:0

Table A-2 For ATI Enhanced Modes (Continued)

AL MODE/TYPE RESOLUTION DIM/COLOR START
ADDRESS
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
A-2 Proprietary and Confidential

A.8 AH = 6; Scroll Active Page Up

AL = number of lines to be scrolled
= 0 ;blanks the whole window

BH = attribute of blanked line
CH, CL = row, column of upper left hand corner of scrolling window
DH, DL = row, column of lower right hand corner of scrolling window

A.9 AH = 7; Scroll Active Page Down

AL = number of lines to be scrolled
 = 0 ;blanks the whole window
BH = attribute of blanked line
CH, CL = row, column of upper left hand corner of scrolling window
DH, DL = row, column of lower right hand corner of scrolling window

A.10 AH = 8; Read Character/Attribute at Current Active
Cursor Position

BH = page number of the desired page
On Exit:
AL = character
AH = attribute (for text mode only)

A.11 AH = 9; Write Character/Attribute at Current Cursor
Position of a specified page

AL = character to be written
BL = attribute of character
BH = page number
CX = count of character to write
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential A-3

A.12 AH = 0Ah; Write Character at Current Cursor Position of a
specified page

AL = character to be written
BH = page number
CX = count of character to write

A.13 AH = 0Bh; Set Color Palette

 This function is valid for modes 4 and 5 only.

BH = 0 ; selects the background color
BL = color value used with that color id
BH = 1 ; selects the palette to be used
BL = 0 ; palette value is GREEN(1)/RED(2)/BROWN(3)

 = 1 ; palette value is CYAN(1)/MAGENTA(2)/WHITE(3)

A.14 AH = 0Ch; Write Dot (graphics mode)

BH = page number
DX, CX= row, column of dot position
AL = color value of dot (if bit 7 of AL is ON, the color value will XOR with

the current value of the dot)

A.15 AH = 0Dh; Read Dot (graphics mode)

BH = page number
DX, CX = row, column of dot position
On Exit:
AL = color value of dot

A.16 AH = 0Eh; Write Teletype to Active Page

AL = character to write
BL = foreground color in graphics mode
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
A-4 Proprietary and Confidential

A.17 AH = 0Fh; Return Current Video Setting

On Exit:
AL = current mode
AH = number of column (in characters) on screen
BH = current active display page

A.18 AH = 10h; Set Palette Registers

AL = 0 ; set individual palette register
BL = palette register
BH = palette value

AL = 1 ; set overscan register
 BH = palette value

AL = 2 ; set all palette and overscan registers
 ES:DX = pointer to palette value table (17 bytes long),

bytes 0 - 15 are palette values for 16 palette registers,
byte 16 is palette value for the overscan register

AL = 3 ; toggle between intensity/blinking bit
 BL = 0 ; set intensity on
 = 1 ; set blinking on

AL = 7 ; read individual palette register
 BL = palette register

On Exit:
 BH = palette value

AL = 8 ; read overscan register
On Exit:

 BH = overscan value

AL = 9 ; read all palette and overscan registers
 ES:DX = pointer to 17-byte buffer
 On Exit:
 ES:DX = pointer to palette value table (17 bytes long),
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential A-5

bytes 0 - 15 are palette values for 16 palette registers,
byte 16 is palette value for the overscan register

AL = 10h ; set a color register
 BX = color register
 DH = red value
 CH = green value
 CL = blue value

AL = 12h ; set a block of color registers
 BX = first color register to be set
 CX = total number of color registers to be set
 ES:DX = pointer to table of color register values in red, green, blue,

red, green, blue,... format

AL = 13h ; set color pages (only valid for 16 color modes)
 BL = 0 ; select color page mode
 BH = 0 ; select 4 pages of 64 color registers each
 = 1 ; select 16 pages of 16 color registers each

 BL = 1 ; select color page
 BH = color page number

AL = 15h ; read a color register
 BX = color register
 On Exit:
 DH = red value
 CH = green value
 CL = blue value

AL = 17h ; read a block of color registers
 BX = first color register to be set
 CX = total number of color registers to be set
 ES:DX = pointer to buffer to store the color register values
 On Exit:
 ES:DX = pointer to table of color register values in red, green, blue,

red, green, blue,..., format
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
A-6 Proprietary and Confidential

t
AL = 18h ; update DAC mask register
BL = new mask value

AL = 19h ; read DAC mask register
BL = value read from DAC mask register

AL = 1Ah ; read current color page information
 BL = current color page mode
 BH = current color page

 AL= 1Bh ; change color values to gray shades
 BX = first color register to be changed
 CX = total number of color registers to be changed

A.19 AH=11h; Character Generator Routines

AL = 00 ; load user specified character set
 ES:BP = pointer to character table

 CX = number of characters to be stored
 DX = character of offset into current table
 BL = block to load
 BH = bytes per character

AL = 01 ; load 8x14 character set
 BL = block to load

AL = 02 ; load 8x8 character set
 BL = block to load

AL = 03 ; set block specifier
 BL = character generator block specifier

AL = 04 ; load 8x16 character set
 BL = block to load

Note: The following functions, AL = 1?h, are similar to the functions AL = 0?h, excep
that with AL=1?h, the number of rows on the screen is recalculated.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential A-7

AL = 10h ; load user specified character set
ES:BP = pointer to character table

 CX = number of characters to be stored
 DX = character of offset into current table
 BL = block to load
 BH = bytes per character

AL = 11h ; load 8x14 character set
 BL = block to load

AL = 12h ; load 8x8 character set
 BL = block to load

AL = 14h ; load 8x16 character set
 BL = block to load

AL = 20h ; update alternative character generator pointer (INT 1F)
 ES:BP = pointer to table

AL = 21h ; update alternative character generator pointer (INT 43)
 ES:BP = pointer to table
 CX = bytes per character
 BL = row specifier
 = 0; DL = rows
 = 1; rows = 14
 = 2; rows = 25
 = 3; rows = 43

AL = 22h ; update alternative character generator pointer (INT 43)
with the 8x14 character

; generator in ROM

AL = 23h ; update alternative character generator pointer (INT 43)
with the 8x8 character

;generator in ROM

AL = 24h ; update alternative character generator pointer (INT 43)
with the 8x16 character

; generator in ROM
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
A-8 Proprietary and Confidential

AL = 30h ; return EGA character generator information
 BH = 0; return current INT 1F pointer
 = 1; return current INT 43 pointer
 = 2; return pointer to 8x14 character generator
 = 3; return pointer to 8x8 character generator (lower)
 = 4; return pointer to 8x8 character generator (upper)
 = 5; return pointer to alternate 9x14 alpha
 = 6; return pointer to 8x16 character generator
 = 7; return pointer to alternate 9x16 alpha

On Exit:
 ES:BP = pointer to table as requested
 CX = points (pixel column per char)
 DL = rows (scan line per char)

A.20 AH = 12h; Return Current EGA Settings/Print Screen
Routine Selection

BL = 10h ; return EGA information
 On Exit:

 BH = 0; color mode in effect
 = 1; monochrome mode in effect
 BL = 3; 256k video memory installed (always return 3)
 CH = simulated value of feature bits
 CL = simulated EGA/VGA dip switch setting

BL = 20h ; select alternate print screen routine for EGA graphics mode

BL = 30h ; select number of scan lines for alpha modes
 AL = 0; 200 scan lines
 = 1; 350 scan lines
 = 2; 400 scan lines
 On Exit:
 AL = 12h; function supported

BL = 31h ; default palette loading during mode set
 AH = 0
 AL = 0; enable
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential A-9

 = 1; disable
 On Exit:
 AL = 12h; function supported

BL = 32h ; video controller
 AL = 0; enable video controller
 = 1; disable video controller
 On Exit:
 AL = 12h; function supported

BL = 33h ; summing of color registers to gray shades
 AL = 0; enable summing
 = 1; disable summing
 On Exit:
 AL = 12h; function supported

BL = 34h ; cursor emulation
AL = 0; enable cursor emulation

 = 1; disable cursor emulation
 On Exit:
 AL = 12h; function supported

BL = 36h ; video screen on/off
 AL = 0; video screen on
 = 1; video screen off
 On Exit:
 AL = 12h; function supported BX=5506h

; VGAWONDER BIOS extension
 AL = video mode
 BP = 0FFFFh
 DI = 0
 SI = 0
 On Exit:
 if BP is not equal to 0FFFFh then ES:BP = pointer to parameter table
 if SI is not equal to 0 then ES:SI = pointer to parameter table supplement
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
A-10 Proprietary and Confidential

A.21 AH = 13h; Write String to Specified Page

ES:BP= pointer to string
CX = length of string
BH = page number
DH,DL=starting row and column of cursor in which the string is placed
AL = 0 ; cursor is not moved
 BL = attribute
 string = (char, char, char, char,...)

AL = 1 ; cursor is moved
 BL = attribute
 string = (char, char, char, char,...)

AL = 2 ; cursor is not moved
 string = (char, attr, char, attr,...)

AL = 3 ; cursor is moved
 string = (char, attr, char, attr,...)

A.22 AH=1Ah; Display Combination Code

AL = 0 ; read current display combination information
 On Exit:

 AL = 1Ah
 BL = current active display code
 BH = alternate display code

 Display Codes (AH = 1Ah)

Code Function

00 No display

01 MDA mode

02 CGA mode

04 EGA in color mode

05 EGA in monochrome mode

07 VGA with analog monochrome monitor

08 VGA with analog color monitor
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential A-11

AL = 1 ; set display combination information
BL = active display
BH = inactive display
On Exit:
AL = 1Ah

A.23 AH=1Bh; Return VGA Functionality and State Information

BX = 0
ES:DI = pointer to buffer used to store the functionality and state

information (minimum 64 bytes)
 On Exit:
 AL = 1Bh
 ES:DI = pointer to buffer with functionality and state information

Functionality and State Information (AH = 1Bh)

[DI+00h] word = offset to static functionality information

[DI+02h] word = segment to static functionality information

[DI+04h] byte = current video mode

[DI+05h] word = character columns on screen

[DI+07h] word = page size in number of bytes

[DI+09h] word = starting address of current page

[DI+0Bh] word = cursor position for eight display pages

[DI+1Bh] word = current cursor type

[DI+1Dh] byte = current active page

[DI+1Eh] word = current CRTC address

[DI+20h] byte = current 3x8 register setting

[DI+21h] byte = current 3x9 register setting

[DI+22h] byte = number of character rows on screen

[DI+23h] word = number of scan lines per character

[DI+25h] byte = active display combination code

[DI+26h] byte = alternate display combination code

[DI+27h] word = number of colors supported in current mode

[DI+29h] byte = number of pages supported in current mode

[DI+2Ah] byte =
=
=
=

0 ; 200 scan lines in current mode
1 ; 350 scan lines in current mode
2 ; 400 scan lines in current mode
3 ; 480 scan lines in current mode
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
A-12 Proprietary and Confidential

[DI+2Bh] byte = Reserved

[DI+2Ch] byte = Reserved

[DI+2Dh] byte = miscellaneous state information
bits 7, 6 = Reserved
bit 5= 0; background intensity
= 1; blinking
bit 4= 1 ; cursor emulation active
bit 3 = 1 ; mode set default palette loading disabled
bit 2= 1 ; monochrome display attached
bit 1= 1 ; summing active
bit 0 = 1 ; all modes on all display active

[DI+2Eh] byte = Reserved

[DI+2Fh] byte = Reserved

[DI+30h] byte = Reserved

[DI+31h] byte = 3; 256Kb of video memory available

[DI+32h] byte = save pointer information
bits 7, 6 = Reserved
bit 5 = 1; DCC extension active
bit 4 = 1; palette override active
bit 3= 1; graphics font override active
bit 2= 1; alpha font override active
bit 1 = 1; dynamic save area active
bit 0 = 1; 512 character set active

[DI+33h] 13 bytes = Reserved

static functionality table format:
0 - function not supported
1 - supported function

[00h] byte = supported video mode
bit 7 = mode 07h
bit 6= mode 06h
bit 5 = mode 05h
bit 4 = mode 04h
bit 3 = mode 03h
bit 2 = mode 02h
bit 1 = mode 01h
bit 0= mode 00h

Functionality and State Information (AH = 1Bh) (Continued)
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential A-13

[01h] byte = supported video mode
bit 7= mode 0Fh
bit 6= mode 0Eh
bit 5 = mode 0Dh
bit 4 = mode 0Ch
bit 3= mode 0Bh
bit 2 = mode 0Ah
bit 1= mode 09h
bit 0= mode 08h

[02h] byte =

supported video mode
bits 7 to 4 = Reserved
bit 3 = mode 13h
bit 2= mode 12h
bit 1= mode 11h
bit 0= mode 10h

[03h] to [06h] bytes = Reserved

[07h] byte = scan lines available in text modes
bits 7 to 3 = Reserved
bit 2= 400 scan lines
bit 1 = 350 scan lines
bit 0 = 200 scan lines

[08h] byte = number of character fonts available in text modes

[09h] byte = maximum number of character fonts that can be active in text
modes

[0Ah] byte = miscellaneous functions
bit 7= color paging
bit 6= color palette (color register)
bit 5 = EGA palette
bit 4 = cursor emulation
bit 3 = default palette loading when mode set
bit 2 = character font loading
bit 1 = color palette summing
bit 0 = all modes supported on all displays

[0Bh] byte = scan lines available in text modes
bits 7 to 4 = Reserved
bit 3 = DCC supported
bit 2= background intensity/blinking control
bit 1= save/restore supported
bit 0= light pen supported

[0Ch] to [0Dh] bytes = Reserved

Functionality and State Information (AH = 1Bh) (Continued)
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
A-14 Proprietary and Confidential

A.24 AH=1Ch; Save and Restore Video State

AL = 0 ; return video save state buffer size requirement
 CX = requested states

 bit 0 = video hardware state
 bit 1 = video BIOS data area
 bit 2 = video DAC state and color registers
 On Exit:
 AL = 1Ch
 BX = number of 64 bytes block required for the states requested

in CX

AL = 1 ; save video state
 CX = requested states (see AL=0)
 ES:BX = pointer to buffer to store the video states information
 On Exit:
 AL = 1Ch

AL = 2 ; restore video state
 CX = requested states (see AL=0)
 ES:BX = pointer to buffer with previous saved video states information
 On Exit:
 AL = 1Ch

[0Eh] byte = save pointer functions
bits 7 to 6 = Reserved
bit 5 = DCC extension supported
bit 4 = palette override
bit 3 = graphics font override
bit 2 = alpha font override
bit 1= dynamic save area
bit 0 = 512-character set

[0Fh] = Reserved

Functionality and State Information (AH = 1Bh) (Continued)
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential A-15

This page intentionally left blank.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
A-16 Proprietary and Confidential

Appendix B
Extended BIOS Function Calls

B.1 Scope
This section provides details about the extended BIOS function calls.

For details about the “BIOS Extensions” refer to page B-2.

For details about the “Mode Table Structure” refer to page B-16.

For details about the “RAGE 128 Internal Parameter Table Format” refer to page B-17.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential B-1

eal
g of

 value.
rting

here
 real

video

0h.

the

h in

e.
mode
f this
e

des
B.2 BIOS Extensions

B.2.1 Video BIOS Base Address

Extended video BIOS call can be invoked by a FAR CALL instruction in x86's 16-bit r
or V86 mode. It can be accomplished in protected mode as well with proper handlin
physical addresses. The physical address of video BIOS is stored in register
BIOS_1_SCRATCH (base address + 014h) as a 16-bit real mode segment address
The following assembler code will save the segment address in register DS. The sta
address of the video BIOS will be DS:0

mov DX, BIOS_1_SCRATCH
in AX, DX
mov DS, AX

Based on this mechanism, the video BIOS can be in RAM or in ROM, or can be anyw
in memory. For the current video BIOS, the initialization has to executed below 1M in
mode. Applications using extended video BIOS functions should work without any
assumptions regarding video BIOS locations.

B.2.2 Calling Extended Functions

The video BIOS address is stored in register BIOS_1_SCRATCH and the extended
BIOS services are accessible by far call to offset 64h with the following instructions.

CALL BIOS_ADDR:64h
Another way to invoke the extended BIOS service is by calling a INT 10h with ah=0A
The support of INT 10h is also available with VGA disabled mode.(Multiple Display
Support Document). Registers AX, BX, CX, DX, SI and DI may be destroyed during
extended function call.

VGA/VESA BIOS functions can be invoked through a far call to the offset location 68
the BIOS.

CALL BIOS_ADDR:68h
Extended and VGA/VESA services support both x86’s 16-bit real and protected mod
However, when invoked in protected mode, the applications need to call a protected
initialization function in the BIOS and setup some segment addresses. The details o
protected mode support are described in the proposed VBE 3.0 documentation. In th
current implementation, the VESA BIOS is VBE 2.0 withx86’s real and protected mo
support.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
B-2 Proprietary and Confidential

monly

 =0 to
B.2.3 Compatibility

The purposes of these extended ROM services are to provide a set of the most com
used hardware dependent functions in a standard interface such that application
programmers need not to worry about the details of hardware programming. It is
recommended that drivers developed for Rage128 should use extended function AL
set display mode and the drivers have to work in VGA share mode.

B.2.4 Extended BIOS Services

BIOS_ADDR:64h
All functions return with error code in AH
AH = 0; no error
AH = 1; function completed with error
AH = 2; function is not supported

Definitions:

DISPLAY DEVICE ID
=
=
=

0;CRT
1;TV
2;DFP

DISPLAY DEVICE MASK [0]
[1]
[2]

=
=
=

0;CRT
1;TV
2;DFP

CRT STANDARD =
=
=

0;NO MONITOR
1;MONOCHROME MONITOR
2;COLOR MONITOR

DFP STANDARD[0]
[2]
other bits a values

=
=
=

1;TFT
1;Scalable DFP
Reserved

TV STANDARD =
=
=
=
=
=

1;NTSC
2;PAL
3;PALM
4;PAL60
5;NTSC-J
6;SCART RGB

TVSTANDARDMASK[0]
[1]
[2]
[3]
[4]
[5]

=
=
=
=
=
=

1;NTSC
1;PAL
1;PALM
1;PAL60
1;NTSC-J
1;SCART RGB
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential B-3

 or
er,
B.2.5 Function 00h - Set Display Mode

B.2.6 Function 01h - Set Display Controller State

This function is used to setup the pre-condition to allow the controller to go into VGA
Extended mode. This function does not actually program the CRT Controller. Howev
this function will program the DAC to the color depth required by the display. This
function will be automatically invoked if a set mode (AL=00h) is called through the
BIOS.

To Call: AL = 00h Set Display Mode
CL[3-0] =

=
=
=
=
=
=

Color depth
1 ; 4bpp
2 ; 8bpp
3 ; 15bpp (555)
4 ; 16bpp (565)
5 ; 24bpp in RGB format
6 ; 32 bpp in xRGB format

CH =
=
=
=
=
=
=
=
=
=
=
=

=

Resolution
E1h ; 640x400
E2h ; 320x200
E3h ; 320x240
E4h ; 512x384
E5h ; 400x300
E6h ; 640x350
12h ; 640x480
6Ah ; 800x600
55h ; 1024x768
81h ; load CRTC table from buffer in DX:BX (see)
82h ; load CRTC table from frame buffer, pointer in DX:BX

(supported in VGA disable products)
83h ; 1280x1024

DX:BX =
=

pointer to parameter table if CH = 81h
32-bit linear address offset (in dword boundary) into frame buffer if

CH = 82h

To Call: AL = 01h Set Display Controller State
CL =

=
0 ; VGA
1 ; Extended
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
B-4 Proprietary and Confidential

B.2.7 Function 02h - Set DAC State

B.2.8 Function 03h - Program Specified Clock Entry

To Call: AL = 02h Set DAC State
CL =

=
=
=

0 ; set DAC to active mode (This function will not alter the
number of bit for the DAC)

1 ; set DAC to sleep mode
2 ; set DAC to 6 bit
3 ; set DAC to 8 bit

To Call: AL = 03h Program Specified Clock Entry

CL[2-0] =
=
=

0 ; MCLK, engine clock
1 ; XCLK, memory clock
2 ; PCLK, dot clock

CH = entry in the frequency table for programming PCLK
BX = value in KHz/10

Returns: AL = clock chip type

BX, CL = programming word depending on type
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential B-5

B.2.9 Function 04h - Short Query Function 0

B.2.10Function 05h - Short Query Function 1

B.2.11Function 06h - Short Query Function 2

To Call: AL = 04h Short Query Function 0

Returns: CH [3-0] = DAC type

CH [7,6,5,4] = Sync on green, gamma correction, 8bit, sleep
CL = Color depth support

Bit 7 = 1 ; 4bpp
Bit 4 = 1 ; 32bpp (unpack 24bpp in xRGB, x is byte MSB)
Bit 3 = 1 ; 24bpp in RGB
Bit 2 = 1 ; 16bpp (555)
Bit 1 = 1 ; 16bpp (565)
Bit 0 = 1 ; 8bpp

DL [2-0] =
=

=

000b ; generic BIOS
001b ; fix frequency monitor BIOS, should only use

default CRTC in BIOS
010b ; fix frequency monitor BIOS, and can use external

CRTC values
BL [3-0] = bus type

BH][3-0] = memory type

DI = subsystem vendor ID

SI = subsystem ID

To Call: AL = 05h Short Query Function 1

Returns: CL [3-0] = Card ID

DX = I/O base address

DI = BIOS segment address

SI = Bus/device information

To Call: AL = 06h Short Query Function 2

Returns: AL = Revision ID

BX = Aperture address (frame buffer address in Mbytes)

CL = Memory size in number of 512K blocks
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
B-6 Proprietary and Confidential

B.2.12Function 07h - Query Graphics Hardware Capability and Capture
Width Info

where,

CH = Reserved memory by hardware in number of 2K blocks

DX = PCI device ID

DI:SI = Alternative aperture address (memory mapped registers in
linear 32bit)

To Call: AL = 07h Query Graphics Hardware Capability and Capture
Width Info

Returns: DX:DI = Pointer to table specifying max dot clock information, the table
is terminated by a zero in the first column

DX:[DI-1] = number of bytes per row
DX:[DI-2] = DX:[DI-2]
CL = support mask to be used

H_DISP
SUPPORTMASK
(use bit 7-4 only)

MEMREQ MAX
DOTCLOCK PIXEL WIDTH

0 (end of table)

H_DISP = Horizontal resolution in number of characters
SUPPORT MASK = A bit value to indicate the valid condition of the entry

MEMREQ
= Minimum memory required to support the specified resolution

and color depth (in numbers of 512K blocks)
MAX DOTCLOCK = Max dot clock with the specified resolution and color depth

in MHz
PIXEL WIDTH = Color depth
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential B-7

To determine if a video mode is supported, the following algorithm can be used:

if ((H_DISP <= horizontal disp(in char)&&
(SUPPORTMASK & CL)&&
(MEMREQ <= current memory size)&&
(MAX DOTCLOCK >= dot clock of the requested mode)&&
(PIXEL WIDTH >= requested color depth))
then
the mode can be supported;

else
the mode cannot be supported

where

DX:DI = Pointer to table specifying max capture width.
The table is terminated by a zero in the first column.
If SI = 0, no table is provided and driver needs to use its
default settings.

DX:[SI-1] = Number of bytes per row
DX:[SI-2] = Format type

H_DISP SCALER
SOURCE MEMREQ MAX

DOTCLOCK
PIXEL
WIDTH

MAX
CAPTURE
SIZE

0 (end of table)

H_DISP = Horizontal resolution in number of characters
SCALER SOURCE[7]
[6]

=
=

1; scaler source format is in 32bpp aRGB888
1; scaler source format is in 15bpp aRGB,
16bpp RGB565, YUV12, VYUY422 and YVYU422

MEMREQ
= Minimum memory required to support the specified

resolution and color depth (in numbers of 512K blocks)
MAX DOTCLOCK = Max dot clock with the specified resolution and color depth

in MHz
PIXEL WIDTH = Color depth
MAX CAPTURE SIZE = The max capture width in number of characters
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
B-8 Proprietary and Confidential

e
To determine the max capture width for a video mode, the following algorithm can b
used:

if ((H_DISP >= horizontal disp(in char)&&
(SCALER SOURCE & scaler source)&&
(MEMREQ <= current memory size)&&
(MAX DOTCLOCK >= dot clock of the requested mode)&&
(PIXEL WIDTH >= requested color depth))
then
max capture width = MAX CAPTURE SIZE;

B.2.13Function 08h - Query Installed Modes

B.2.14Function 09h - Query Supported Mode

To Call: AL = 08h Query Install Modes
DI = DISPLAY DEVICE ID

DX:BX = Pointer to buffer (64 bytes)

Returns: DX:BX = Pointer to a list of supported modes terminated by a zero

To Call: AL = 09h Query Supported Mode
DI = DISPLAY DEVICE ID
CL = color depth (see function 0)

CH = Mode number as returned by Query Installed Modes (AL=08h)
or as specified in Set Display Mode (AL=00h)

DX:BX = Pointer to buffer (64 bytes)

Returns: DX:BX = Pointer to CRTC parameter table (if the mode is supported)
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential B-9

B.2.15Function 0Ah - Display Power Management Service (DPMS)

B.2.16Function 0Bh - Display Data Channel (DDC) Service

To Call: AL = 0Ah Display Power Management Service (DPMS)
CH = 0 ; set DPMS mode
CL [2-0] =

=
=
=
=

0 ; active
1 ; stand-by
2 ; suspend
3 ; OFF
4 ; blank the display (this is NOT a DPMS state)

CH = 1 ; return current DPMS state

Returns: CL = Current DPMS state

To Call: AL = 0Bh Display Data Channel (DDC) Service
BH = DISPLAY DEVICE ID

BL = 0 ; return DDC format supported by Graphics
controller and monitor

Returns: BL = 0 ; DDC not supported
BL [0]
BL [1]

=
=

1 ; DDC1 supported by monitor
1 ; DDC2B supported by monitor

AL = 0 ; DDC not supported by BIOS
AL [0]
AL [1]
AL [2]
AL [3]
AL [6]
AL [7]

=
=
=
=
=
=

1 ; DDC1 supported by monitor
1 ; DDC2B supported by monitor
1 ; DDC2AB supported by BIOS
1 ; DDC2Bi supported by BIOS
1 ; BIOS supports detailed EDID timing at power-up
1 ; BIOS can us/uses EDID setup the board at

power-up
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
B-10 Proprietary and Confidential

To Call: AL = 0Bh Display Data Channel (DDC) Service
BL = 1 ; read EDID data (support DDC1/DDC2B only,

first EDID block for DDC2B)
BH = DISPLAY DEVICE ID
CX = Buffer size
DX:DI = Pointer to buffer (not less than 128 bytes)

Returns: DX:DI = Pointer to EDID data

To Call: AL = 0Bh Display Data Channel (DDC) Service

BL = 2 ; read from device to buffer (supported by
DDC2B/2AB/2Bi), master read

CX = Buffer size

DX:DI = Pointer to buffer (monitor address in first byte of DX:DI when
calling)

Returns: DX:DI = Pointer to buffer with data read

To Call: AL = 0Bh Display Data Channel (DDC) Service
BL = 3 ; write to device from buffer/[read from device to

buffer] (only supported by DDC2B/2AB/2Bi),
master write/[slave read (supported if DDC2AB is
supported)]

CX = Buffer size

DX:DI = Pointer to buffer
DX:[DI]...DX:[DI + CX - 1] = Data to write
DX:[DI+CX] = Max bytes to read after write (<= buffer size)

DX:[DI+CX+1] = Waiting limit for slave read in msec

Returns: DX:DI = Pointer to buffer with data read (if required)

To Call: AL = 0Bh Display Data Channel (DDC) Service

BL = 4 ; return DDC format supported by BIOS

Returns: AL[0]
AL[1]
AL[2]
AL[3]

=
=
=
=

1 ; DDC1 supported by BIOS
1 ; DDC2B supported by BIOS
1 ; DDC2AB supported by BIOS
1 ; DDC2Bi supported by BIOS

AL[6]
AL[7]

=
=

1 ; BIOS support detailed EDID timing at power-up
1 ; BIOS can use EDID information to setup the

board at power-up
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential B-11

B.2.17Function 0Ch - Save and Restore Graphics Controller Data

B.2.18Function 0Dh - Get/Set Refresh Rate (CRT only)

To Call: AL = 0Ch Save and Restore Graphics Controller Data
CL = 0 ; return buffer size required to fit saved data in

number of bytes
CH [0] =

=
0 ; do not include GUI registers
1 ; include GUI registers (not supported)

Returns: CX = buffer size

To Call: AL = 0Ch Save and Restore Graphics Controller Data

CL = 1 ; save controller data

DX:DI = pointer to buffer

Returns: DX:DI = pointer to buffer with saved data

To Call: AL = 0Ch Save and Restore Graphics Controller Data

CL = 2 ; restore controller data
DX:DI = pointer to buffer

To Call: AL = 0Dh Get/Set Refresh Rate (CRT only)
CL =

=
=

0 ; get current refresh rate information
1 ; change current refresh rate information
2 ; save refresh rate information

DX:DI = pointer to buffer (min 20 bytes required and is terminated by
0FFFFh)

Table B-1 Refresh Rate Information Table

Offset (word) Content

0 12h(640x480),

1 12h(640x480) refresh mask
bit 2 = 85Hz
bit 1 = 75Hz
bit 0 = 72Hz
if bits = 0; 60Hz

2 6Ah(800x600)
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
B-12 Proprietary and Confidential

B.2.19Function 14h - Detect CRT/TV/DFP

3 6Ah(800x600) refresh mask
bit 4 = 85Hz
bit 3 = 56Hz
bit 2 = 60Hz
bit 1 = 72Hz
bit 0 = 75Hz

4 55h(1024x768)

5 55h(1024x768) refresh mask
bit 4 = 85Hz
bit 3 = 87Hz Interlaced
bit 2 = 60Hz
bit 1 = 70Hz
bit 0 = 75Hz

6 83h(1280x1024)

7 83h(1280x1024) refresh mask
bit 5 = 85Hz
bit 4 = 43Hz
bit 3 = 47Hz
bit 2 = 60Hz
bit 1 = 70Hz
bit 0 = 75Hz

8 0FFFFh

To Call: AL = 0Dh Get/Set Refresh Rate (CRT only)

CL = 3 ; restore factory default refresh rate information

The following functions are available if TV or Flat Panel are supported

To Call: AL = 14h Detect CRT/TV/DFP
CH [0] =

=

0 ; return monitor information based on previous
detection

1 ; return current monitor information by detection

Table B-1 Refresh Rate Information Table (Continued)

Offset (word) Content
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential B-13

B.2.20Function 15h - Get/Set Active Display(s)

CH [1] =

=

0 ; return TV information based on previous
detection

1 ; return current TV information by detection

CH [2] =

=

0 ; return DFP information based on previous
detection

1 ; return current DFP information by detection

CH [7-3] = 00000b ; reserved

Returns: CH =
=
=
=

000b ; no TV attached
001b ; TV attached to composite connector
100b ; TV attached to S-Video connector
101b ; TV attached to both composite and S-Video

connectors
CL = CRT STANDARD
BL = 1 ; DFP detected

BH = TV STANDARD

To Call: AL = 15h Get/Set Active Display(s)

CH = 0 return displays that will be set active at next mode
call

Returns: CL = requested display
CL [0] 1 ; CRT
CL [0] 1 ; TV

CL [0] 1 ; DFP
CL [0] 1 ; auto-switch
CL [7-4] 0000b ; reserved

To Call: AL = 15h Get / Set Active Display(s)

CH = 1 ; set active display, will take effect at next setmode

CL = requested display

CL [0] 1 ; CRT
CL [1] 1 ; TV
CL [2] 1 ; DFP

CL [3] 1 ; auto-switch
CL [7-4] 0000b ; reserved
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
B-14 Proprietary and Confidential

B.2.21Function 16h - Get/Set TV Standard

This function returns an error if dynamic switching of TV standard is NOT supported.

B.2.22Function 17h - Get TVOut Info

This function will return an error code if TVOut is NOT supported.

To Call: AL = 16h Get / Set TV Standard
CH = 0 ; return current TV standard

Returns: CH = current active standard value
CL = TV standard mask that can be supported on the fly

To Call: AL = 16h Get / Set TV Standard

CH = 1 ; set TV standard, only active at next setmode
CL = TV standard value

Returns: None

To Call: AL = 16h Get TVOut info

DI = 0 ; get TVOut Information

Returns: CH = TVOut chip revision code

CL =
=
=
=
=

Reference Frequency
0 ; 29.49892 MHz
1 ; 28.63636 MHz
2 ; 14.31888 MHz
3 ; 27.00000 MHz

Returns:
(cont’d)

DX =
=
=

0 ; no TVOut chip is detected
1 ; TVOut chip is detected but not supported in BIOS
3 ; TVOut chip is detected and is supported in BIOS

To Call: AL = 16h Get TVOut info
DI = 1 ; reset Graphics Controller DSP value based on

current setting

Returns: None
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential B-15

B.3 Mode Table Structure

B.3.1 CRTC Parameter Table

Table B-2 CRTC Parameter

Offset (byte) Description

Installed Mode Table 1

0 - 1 Horizontal resolution, in pixels

2 - 3 Vertical resolution, in lines

4 Mode number of this mode table

5 Maximum pixel depth

6 - 7 Reserved

8 - 9 Bits [15-0]Reserved
Bit 8 Disable pipeline delay adjustment in BIOS
Bits [7-6]Reserved
Bit 4Enable Composite Sync
Bits [3-2]Reserved
Bit 1Enable interlace
Bit 0 Enable double scan

0Ah CRTC_H_TOTAL

0Bh CRTC_H_DISP

0Ch CRTC_H_SYNC_STRT

0Dh CRTC_H_SYNC_WID

0Eh - 0Fh CRTC_V_TOTAL

10h - 11h CRTC_V_DISP

12h - 13h CRTC_V_SYNC_STRT

14h - 15h Bits [15-8]- Reserved for CRTC_H_DISP
Bits [7-0]- CRTC_V_SYNC_WID

16h - 17h Dot Clock for coprocessor mode (for programmable clock chip)

18h - 19h Bits [15-8]- CRTC_H_SYNC_DLY
Bits [7-4]- OVR_WID_LEFT
Bits [3-0]- OVR_WID_RIGHT

1Ah - 1Bh Bits [15-8]- OVR_WID_TOP
Bits [7-0]- OVR_WID_BOTTOM

1Ch - 1Dh Bits [15-8]- OVR_CLR_G
Bits [7-0]- OVR_CLR_B

1Eh - 1Fh Bits [15-8]= 0
Bits [7-0]- OVR_CLR_R
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
B-16 Proprietary and Confidential

B.4 RAGE 128 Internal Parameter Table Format

B.4.1 CRTC Parameter Table

Table B-3 RAGE 128 internal CRTC parameter

Offset
(words) Bits Description

0 1 5 - 8
7 - 0

Not used
Video Mode Number

1 15 - 8
7 - 0

Reserved
 CRT Refresh rate bit mask

2 15 - 9
8

 7- 5
4

2 - 3
1
0

Reserved
Disable Hsync delay adjust in BIOS
Reserved
Enable Composite Sync
Reserved
Enable interlace
Enable double scan

3 15 - 8
7 - 0

CRTC_H_DISP
CRTC_H_TOTAL

4
15 - 8
7 - 0

CRTC_H_SYNC_WID
CRTC_H_SYNC_STRT

5 15 - 0 CRTC_V_TOTAL

6 15 - 0 CRTC_V_DISP

7 15 - 0 CRTC_V_SYNC_STRT

8 15 - 8
7 - 0

Reserved for CRTC_H_DISP
CRTC_V_SYNC_WIDTH

9 15 - 0 Dot Clock in KHz /10

A 15 - 8
7 - 4
3 - 0

CRTC_H_SYNC_DLY
OVR_WID_LEFT
OVR_WID_RIGHT

B 15 - 8
7 - 0

OVR_WID_TOP,
OVR_WID_BOTTOM

C 15 - 8
7 - 0

OVR_CLR_G
OVR_CLR_B

D 15 - 8
7 - 0

0
OVR_CLR_R

© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential B-17

This page intentionally left blank.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
B-18 Proprietary and Confidential

d

tion
Appendix C
BIOS Header, Scratch Registers an

Information Tables

C.1 Scope

This section provides details about the BIOS Header, Scratch Registers and Informa
Tables.

For details about the“Video BIOS Header” refer to page C-2.

For details about the “Scratch Registers” refer to page C-6.

For details about the “Information Tables” refer to page C-8.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential C-1

C.2 Video BIOS Header

There is information stored in the BIOS header. This information is not intended for
application program development.

Table C-1 Video BIOS Header

Byte offset Content

0 =2, Type definition

1 extended function code, 0a0h,0a1h...etc.

2 OEM_ID1

3 OEM_ID2

4 BIOS_MAJOR_REV

5 BIOS_MINOR_REV

6-7 Size of structure in number of bytes

8-9 Pointer to SMI (BIOS entry + 1)

0Ah-0Bh Pointer to PMID

0Ch-0Dh Pointer to initialization table

0Eh-0Fh Pointer to CRC checksum block

10h-11h Pointer to config file name

12h-13h Pointer to logon message

14h-15h Pointer to misc. information

16h-17h PCI bus/device/function code

18h-19h BIOS runtime segment address

1Ah-1Bh I/O base address

1Ch-1Dh Subsystem vendor ID

1Eh-1Fh Subsystem ID

20h-21h Post vendor ID

22h-23h Int 10h offset, Coprocessor Only BIOS

24h-25h Int 10h segment, Coprocessor Only BIOS

26h-27h Monitor information, OEM specific

28h-29h Pointer to configuration block (if non-zero)

2Ah-2Bh Pointer to DAC pipeline delay information

2Ch-2Dh Pointer to capability data structure

2Eh-2Fh Pointer to internal CRT tables

30h-31h Pointer to PLL information block

32h-33h Pointer to TV information table (if non-zero)

34h-35h Pointer to DFP information table (if non-zero)
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
C-2 Proprietary and Confidential

ion
The following code will locate the BIOS header and extract the PCI bus/device/funct
information from the ROM header.

unsigned far *ip;

char far *cp;

FP_SEG(ip) = BIOSLocation();/* assume BIOSLocation()
/* will return the BIOS segment
/* address */

FP_OFF(ip) = 0x48; /* pointer to offset to the BIOS
/* header */

FP_OFF(ip) = ip[0]; /* update word pointer to
/* point to the BIOS header */

FP_SEG(cp) = FP_SEG(ip); /* update byte pointer to
/* point to the BIOS header as
/* well */

PciBusDev = ip[0x0b]; /* get the PCI bus/dev/func
/* word */

BIOS revision print out format
The BIOS revision number should be in the following format
(AAA.BBB.CCC.DDD.CONFIG.FILE)

printf("%03d.%03d.%03d%03d.%s", OEM_ID1, OEM_ID2, BIOS_MAJOR_REV,
BIOS_MINOR_REV,config.file);

Configuration block
dw2
dwbuffersize
dwbuffersize dup (0)

36h-37h Pointer to hardware configuration table

38h-39h Pointer to multimedia table (if non-zero)

3Ah-3Dh
TV standard BIOS table support signature "$TVS" (if dynamic bootup TV
standard is supported, otherwise this field is zero)

3Eh-3Fh
Pointer to TV standard BIOS table (if non-zero and if offset 3Ah-3Dh is
equal $TVS)

Table C-1 Video BIOS Header (Continued)

Byte offset Content
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential C-3

Code Layout
StringMeaning
‘1COD’primary runtime code ends
‘1INI’primary initialization code ends
‘DDCP’paged DDC code ends
‘AH1C’paged function ah=1ch and CXSTATE ends
‘BOOT’dual boot image ends

Misc Block
StringContent
‘R128’Rage 128 indicator
‘PCI’ PCI bus
‘AGP’ AGP
‘SGS1’SDR SGRAM 1:1
‘SGS2’SDR SGRAM 2:1
‘SGD1’DDR SGRAM

Table C-1 Initialization Block

Register (word) ‘OR’ Mask (dword) ‘AND’ Mask (dword)

BIOS_0_SCRATCH

BUS_CNTL

HW_DEBUG

GEN_RESET_CNTL

MEM_CNTL

EXT_MEM_CNTL

MEM_INTF_CNTL

MEM_STR_CNTL

MEM_INIT_LAT_TIMER

MEM_SDRAM_MODE_REG

MEM_ADDR_CONFIG

GUI_DEBUG0

GPIO_MONID_REG

SURFACE_DELAY

PC_GUI_MODE

00000h
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
C-4 Proprietary and Confidential

Table C-2 PLL Block

Byte offset Content

0 6, Clock chip type

1 Size of the structure in byte

2 Dot lock entry used for accelerated modes

3 Dot lock entry used for extended VGA modes

4 - 5 Offset into internal clock table used by VGA parameter table

6 - 7 Offset into actual programmed frequency table at POST

8 - 9 XCLK setting, (memory clock in KHz / 10)

10 - 11 MCLK setting, (engine clock in KHz / 10)

12 Number of PLL information blocks to follow, currently value is 3

13 Size of each PLL information block

14 - 15 Reference frequency of the dot clock

16 - 17 Reference Divider of the dot clock

18 - 21 Min frequency can be supported before post divider for the dot clock

22 - 25 Max frequency can be supported for the dot clock

26 - 27 Reference frequency of the MCLK, engine clock

28 - 29 Reference divider of the MCLK, engine clock

30 - 33
Min frequency can be supported before post divider for the MCLK,

engine clock

34 - 37 Max frequency can be supported for the MCLK, engine clock

38 - 39 Reference frequency of the XCLK, memory clock

40 - 41 Reference divider of the XCLK, memory clock

42 - 45
Min frequency can be supported before post divider for the XCLK,

memory clock

46 - 49 Max frequency can be supported for the XCLK, memory clock
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential C-5

C.3 Scratch Registers

Table C-3 Scratch Registers

Scratch Register Content

BIOS_0_SCRATCH(base address + 010h)

bit 7 -Windows DOS emulation
bit 6 -Mode checking by pass
bit 5 -External CRTC table indicator
bit 4 -Reserved (DOS)
bit 3 -VBE linear frame buffer
bit 2 -VBE single R/W page
bit 1
bit 0

BIOS_0_SCRATCH + 1(base address +
+ 011h)

bit 3 -FP VGA auto scaling
bit 2 -FP autoswitch, internal use
bit 1- FP autoswitch pending
bit 0 - TV enable state

BIOS_0_SCRATCH + 2(base address +
+ 012h)

bit 7-TV S-Video connected
bit 6 -FP connected
bit 5 -TV composite connected
bit 4 -CRT connected
bit 3 -Autoswitch enabled
bit 2 -FP active
bit 1-TV active request
bit 0 -CRT active

BIOS_0_SCRATCH + 3(base address +
+ 013h)

Bits [7- 5]- DFP features
Bit 7 - panel scalable
Bit 6 - use the scalability of the chip itself
Bit 5 - use the scalability of the panel
Bits [4- 2] - TV STANDARD
Bits [1- 0] - CRT STANDARD

BIOS_1_SCRATCH + 0(base address +
+ 014h)

BIOS segment address (7 - 0)

BIOS_1_SCRATCH + 1(base address +
+ 015h)

BIOS segment address (15 - 8)

BIOS_1_SCRATCH + 2(base address +
+ 016h)

Bus/device/function information

BIOS_1_SCRATCH + 3(base address +
+ 017h)

Bus/device/function information

BIOS_2_SCRATCH + 0(base address +
+ 018h)

640 refresh mask

BIOS_2_SCRATCH + 1(base address +
+ 019h)

800 refresh mask
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
C-6 Proprietary and Confidential

BIOS_2_SCRATCH + 2(base address +
+ 01Ah)

1024 refresh mask

BIOS_2_SCRATCH + 3(base address +
+ 01Bh)

1280 refresh mask

BIOS_3_SCRATCH + 0(base address +
+ 01Ch)

1600 refresh mask

BIOS_3_SCRATCH + 1(base address +
+ 01Dh)

PDF resolution supported by panel
Bits [7-4]- Reserved
Bit 3- 1280x1024
Bit 2- 1024x768
Bit 1- 800x600
Bit 0- 640x480

BIOS_3_SCRATCH + 2(base address +
+ 01Eh)

Reserved

BIOS_3_SCRATCH + 3(base address +
+ 01Fh)

Reserved

Table C-3 Scratch Registers (Continued)

Scratch Register Content
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential C-7

C.4 Information Tables

C.4.1 TV Information

Table C-4 TV Information Table

Byte offset Content

0 -2 Signature “$TV”

3 Table version = 1

4 - 5 TV information table size

6 TVOut support information:
‘N’ - default TVOut chip not found
‘T’ - TVOut chip on board

7 BIOS built-in initialization TV standard
Bits [3-0] = 0001b for NTSC

= 0010b for PAL
= 0011b for PAL-M
= 0100b for PAL-60
= 0101b for NTSC-J
= 0110b for SCART-PAL

8 Checksum

9 TVOut information
Bits [1-0] = 00b invalid

= 01b TV off, CRT on
= 10b TV on, CRT off
= 11b TV on, CRT on

Bits [3-2] = 00b 29.498928713 MHz
= 01b 28.636360000 MHz
= 10b 14.318180000 MHz
= 11b 27.000000000 MHz

10 Run time supported TV standard
Bit 0 NTSC
Bit 1 PAL
Bit 2 PAL-M
Bit 3 PAL-60
Bit 4 NTSC-J
Bit 5 SCART-PAL
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
C-8 Proprietary and Confidential

C.4.2 DFP Information

11

Initialization time supported TV standard
Bit 0 NTSC
Bit 1 PAL
Bit 2 PAL-M
Bit 3 PAL-60
Bit 4 NTSC-J
Bit 5 SCART-PAL

Table C-5 DFP Information Table (Revision 0)

Byte offset Content

0 Table revision = 0

1 Table size in bytes = 5

2

Bits [3-0] - Type of hardware support
0 None
1 1042x768
2 1280x1024
3 1600x1200
4 800x600
5 - Fh Reserved

Bits [7-4] - Reserved

3

DFP standard(s) supported
Bit 0 = 1 TFT
Bit 1 = 1 DSTN
Bit s [7-2] Reserved

4 - 5 DFP ID

Table C-4 TV Information Table (Continued)

Byte offset Content
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential C-9

Table C-6 DFP Information Table (Revision 1)

Byte offset Content

0 Table revision = 1

1 Table size in bytes = 5

2

Bits [3-0] - Type of hardware support
0 640x480
1 800x600
2 1024x768
3 1280x1024
4 1600x1200
5 - Fh Reserved

Bits [7-4] - Reserved

3

DFP standard(s) supported
Bit 0 = 1 TFT
Bit 1 = 1 DSTN
Bit s [7-2] Reserved

4
Vendor Specific Support Flag

Bit 0 = 1 Toshiba System BIOS Support for EDID

5
Pointer to Vendor Specific Table

= 0h for NO TABLE DEFINED, i.e. byte 4 should be 0
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
C-10 Proprietary and Confidential

orts
SA
ncy,

 Ver.

2

Appendix D
VESA BIOS Extension

D.1 Scope

This section provides details about the VESA BIOS Extension. The VESA BIOS supp
16 color and HiColor modes through this VBE extension. A brief description of the VE
BIOS functions is included for completeness. For detailed information or any discrepa
please refer to the original published documentation (VBE Core Functions Standard
2.0).

For details about the “Status Information” refer to page D2.

For details about the “Function 00h - Return Super VGA Information” refer to
page D3.

For details about the “Function 01h - Return Super VGA Mode Information” refer to
page D6.

For details about the “Function 02h - Set Super VGA Video Mode” refer to page D1.

For details about the “Function 03h - Return Current Video Mode” refer to page D13.

For details about the “Function 04h - Save/Restore State” refer to page D14.

For details about the “Function 05h - Display Window Control” refer to page D15.

For details about the “Function 06h - Set/Get Logical Scan Line Length” refer to
page D17.

For details about the “Function 07h - Set/Get Display Start” refer to page D18.

For details about the “Function 08h - Set/Get AC Palette Format” refer to page D19.

For details about the “Function 09h - Set/Get AC Palette Data” refer to page D20.

For details about the “Power Management Services” refer to page D21.

For details about the “Display Identification Extensions” refer to page D23.
© 1999 ATI Technologies Inc. RAGE 128 Software Programming Manual
Proprietary and Confidential D-1

Status Information

ion

ion.
D.2 Status Information

Every function returns status information in the AX register. The format and descript
of the status word is as follows:

AL==4Fh: Function is supported
AL !=4Fh: Function is not supported
AH==00h: Function call successful
AH==01h: Function call failed
AH==02h: Function is not supported in the current hardware configuration
AH==03h: Function call invalid in current video mode

Software should treat a non-zero value in the AH register as a general failure condit
RAGE 128 Software Programming Manual © 1999 ATI Technologies Inc.
D-2 Proprietary and Confidential

Function 00h - Return Super VGA Information

E
te
 the

d

D.3 Function 00h - Return Super VGA Information

The information block has the following structure:

• The VESASignature field contains the characters VESA if this is a valid block. VB
2.0 application should preset this field with the ASCII characters ‘VBE2’ to indica
to the VBE implementation that the VBE 2.0 extended information is desired, and
VBE InfoBlock is 512 bytes in size. Upon return from VBE Function 00h, this fiel
should always be set to ‘VESA’ by the VBE implementation.

• VESAVersion is a binary field that specifies what level of the VESA standard the
Super VGA BIOS conforms to.

• OEMStringPtr is a far pointer to a null-terminated, OEM-defined string that
currently points to ATI MACH64. This pointer may point into either the ROM or
RAM, depending on the specific implementation. VBE 2.0 BIOS implementations

Input: AH = 4Fh Super VGA support
AL = 00h Return Super VGA information

ES:DI = Pointer to 256-byte buffer

Output: AX Status

Comments: All other registers are preserved.

VgaInfoBlock struc

VESASignature db ’VESA’ ;4 signature bytes

VESAVersion db 200h ;VESA version number

OEMStringPtr dd ? ;Pointer to OEM string

Capabilities db 4 dup (?) ;Capabilities of the video;environment

VideoModePtr dd ?
;Pointer to supported Super VGA modes (see table
below)

TotalMemory dw ? ;Number of 64Kb memory blocks on board

OEMSoftwareRev dw ? ; VBE implementation Software revision

OEMVendorNamePtr dd ? ;Pointer to OEM Vendor Name String

OEMProductNamePtr dd ? ;Pointer to OEM Product Name String

OEMProductRevPtr dd ? ;Pointer to OEM Product Revision String

Reserved db 222 dup (?) ;Reserved for VBE implementation scratch area

OemData db 256 dup (?) ;Data Area for OEM Strings

VgaInfoBlock ends
© 1999 ATI Technologies Inc. RAGE 128 Software Programming Manual
Proprietary and Confidential D-3

Function 00h - Return Super VGA Information

 to

nd
 be

ll
ts).
 into
t
 in

y
tion.

l

ld is

2’
must place this string in the OemData area within the VbeInfoBlock if ‘VBE2’ is
preset in the VbeSignature field on entry to Function 00h. This makes it possible
convert the RealMode address to an offset within the VbeInfoBlock for Protected
mode applications.

• The Capabilities field describes the general features supported in the video
environment. The bits are defined as follows:

• VGA compatibility is defined as supporting all standard IBM VGA modes, fonts a
I/O ports; however, VGA compatibility doesn’t guarantee that all modes which can
set are VGA compatible, or that the 8x14 font is available.

• The VideoModePtr points to a list of supported Super VGA (VESA-defined as we
as OEM-specific) mode numbers. Each mode number occupies one word (16 bi
The list of mode numbers is terminated by a -1 (0FFFFh) The pointer could point
either the ROM or RAM, depending on the specific implementation. Either the lis
would be a static string stored in ROM, or the list would be generated at run-time
the information block (see above in RAM). It is the application’s responsibility to
verify the current availability of any mode returned by this function, through the
Return Super VGA mode information (Function 1) call. Some returned modes ma
not be available, due to the video board’s current memory and monitor configura

• The TotalMemory field indicates the maximum amount of memory physically
installed and available to the frame buffer in 64KB units.

• The OemSoftwareRev field is a BCD value which specifies the OEM revision leve
of the VBE software.

• The OemVendorNamePtr is a pointer to a null-terminated string containing the
name of the vendor which produced the display controller board product. This fie
only filled in when ‘VBE2’ is preset in the VbeSignatur field on entry to Function
00h.

• The OemProductNamePtr is a pointer to a null-terminated string containing the
product name of the display controller board. This field is only filled in when ‘VBE

D0 DAC is switchable
0 = DAC is fixed-width, with 6 bits per primary color
1 = DAC width is switchable

D1
0 = Controller is VGA compatible
1 = Controller is not VGA compatible

D2
0 = Normal RAMDAC operation
1 = When programming large blocks of information to the RAMDAC, use the
blank bit in Function 09h.

D[3:31] Reserved
RAGE 128 Software Programming Manual © 1999 ATI Technologies Inc.
D-4 Proprietary and Confidential

Function 00h - Return Super VGA Information

is

lled.
is preset in the VbeSignatur field on entry to Function 00h.

• The OemProductRevPtr is a pointer to a null-terminated string containing the
revision or manufacturing level of the display controller board product. This field
only filled in when ‘VBE2’ is preset in the VbeSignatur field on entry to Function
00h.

• The OemData field is a 256 byte data area that is used to return OEM information
returned by VBE Function 00h when ‘VBE2’ is preset in the VbeSignatur field.

• The Total Memory field indicates the amount of memory installed on the VGA
board. Its value represents the number of 64Kb blocks of memory currently insta

Table D-2 VESA Super VGA Modes

15-bit Mode
Number

7-bit Mode
Number Resolution Colors

100h - 640x400 256

101h - 640x480 256

102h - 800x600 16

103h - 800x600 256

104h - 1024x768 16

105h - 1024x768 256

107h - 1280x1024 256

110h - 640x480 32K (5:5:5)

111h - 640x480 64K (5:6:5)

112h - 640x480 16.8M (8:8:8)

113h - 800x600 32K (5:5:5)

114h - 800x600 64K (5:6:5)

115h - 800x600 16.8M (8:8:8)

116h - 1024x768 32K (5:5:5)

117h - 1024x768 64K (5:6:5)

118h - 1024x768 16.8M (8:8:8)

119h - 1280x1024 32K (5:5:5)

11Ah - 1280x1024 64K (5:6:5)

11Bh - 1280x1024 16.8M (8:8:8)
© 1999 ATI Technologies Inc. RAGE 128 Software Programming Manual
Proprietary and Confidential D-5

Function 01h - Return Super VGA Mode Information
D.4 Function 01h - Return Super VGA Mode Information

This function returns information about a specific Super VGA video mode.

The mode information block has the following structure:

Input: AH = 4Fh Super VGA support

AL = 01h Return Super VGA Mode Information
CX = Super VGA video mode*
ES:DI = Pointer to 256-byte buffer

Output: AX Status

Comments: All other registers are preserved.
* Mode number must be one of those returned by Function 0

ModeInfoBlock struc

;mandatory information

ModeAttributes dw ? ;mode attributes

WinAAttributes db ? ;window A attributes

WinBAttributes db ? ;window B attributes

WinGranularity dw ? ;window granularity

WinSize dw ? ;window size

WinASegment dw ? ;window A start segment

WinBSegment dw ? ;window B start segment

WinFuncPtr dd ? ;pointer to window function

BytesPerScanLine dw ? ;bytes per scan line

;formerly optional information (now mandatory)

XResolution dw ? ;horizontal resolution

YResolution dw ? ;vertical resolution

XCharSize db ? character cell width

YCharSize db ? character cell height

NumberOfPlanes db ? number of memory planes

BitsPerPixel db ? bits per pixel

NumberOfBanks db ? number of banks

MemoryModel db ? memory model type
RAGE 128 Software Programming Manual © 1999 ATI Technologies Inc.
D-6 Proprietary and Confidential

Function 01h - Return Super VGA Mode Information
BankSize db ? bank size, in KB

NumberOfImagePages db ? number of images

Reserved db 1 Reserved for page function

;New Direct Color Fields

RedMaskSize db ? ;bit position of lsb of red mask

RedFieldPosition db ?
;size of direct color green mask,
in;bits

GreenMaskSize db ? ;bit position of lsb of green mask

GreenFieldPosition db ?
;size of direct color blue mask, in
bits

BlueMaskSize db ? ;bit position of lsb of blue mask

BlueFieldPosition db ?
;size of direct color Reserved
mask,;in bits

RsvdMaskSize db ?
;bit position of lsb of Reserved
mask

RsvdFieldPosition db ? ;direct color mode attributes

DirectColorModeInfo db ? ;bit position of lsb of red mask

;Mandatory information for VBE 2.0 and above

PhysBasePtr dd ? ;physical address for flat
memory frame buffer

OffScreenMemOffset dd ?
;pointer to start of off screen
memory

OffScreenMem dw ?
;amount of off screen memory in
1k units

Reserved db 206 dup (?) ;remainder of ModeInfoBlock

ModeInfoBlock ends
© 1999 ATI Technologies Inc. RAGE 128 Software Programming Manual
Proprietary and Confidential D-7

Function 01h - Return Super VGA Mode Information

.

s
• The ModeAttributes field describes certain important characteristics of the video
mode. The field is defined as follows:

• The BytesPerScanline field specifies the number of bytes in each logical scanline
The logical scanline could be equal to or larger than the displayed scanline.

• WinAAttributes and WinBAttributes describe the characteristics of the CPU
windowing scheme, such as whether the windows exist and are read/writable, a
follows:

D0 Mode supported in hardware:
0 = Mode is not supported in hardware
1 = Mode is supported in hardware

D1 = 1 (Reserved)

D2 Output functions supported by BIOS:
0 = Output functions not supported by BIOS
1 = Output functions supported by BIOS

D3 Monochrome/color mode (see note below):
0 = Monochrome mode
1 = Color mode

D4 Mode type:
0 = Text mode
1 = Graphics mode

D5 VGA compatible mode:
0 = Yes
1 = No

D6 VGA compatible windowed memory mode is available:
0 = Yes
1 = No

D7 Linear frame buffer mode is available:
0 = Yes
1 = No

D[8:15] Reserved

D0 Window supported:
0 = window is not supported
1 = window is supported

D1 Window readable:
0 = window is not readable
1 = window is readable

D2 Window writable:
0 = window is not writable
1 = window is writable
RAGE 128 Software Programming Manual © 1999 ATI Technologies Inc.
D-8 Proprietary and Confidential

Function 01h - Return Super VGA Mode Information

 be

re

on.

are
nce

 4.

e
e a 4
eld.

in
If windowing is not supported (bit D0 = 0) for both Window A and Window B, an
application can assume that the display memory buffer resides at the standard CPU
address appropriate for the MemoryModel of the mode.

• WinGranularity specifies the smallest boundary, in KB, on which the window can
placed in the video memory. The value of this field is undefined if Bit D0 of the
appropriate WinAttributes field is not set.

• WinSize specifies the size of the window, in KB.

• WinASegment and WinBSegment addresses specify the segment addresses whe
the windows are located in the CPU address space.

• WinFuncAddr specifies the address of the CPU video memory windowing functi
The windowing function can be invoked either through VESA BIOS function 05h or
by calling the function directly. A direct call will provide faster access to the hardw
paging registers than using Int 10h, and is intended tp be used by high-performa
applications. If this field is Null, Function 05h must be used to set the memory
window, if paging is supported.

• XResolution and YResolution specify the height and width of the video mode, in
pixels.

• XCharCellSize and YCharCellSize specify the size of the character cell, in pixels.

• The NumberOfPlanes field specifies the number of memory planes available to
software in that mode. For standard 16-color VGA graphics, this would be set to
For standard packed pixel modes, the field would be set to 1.

• The BitsPerPixel field specifies the total number of bits that define the color of on
pixel. For example, a standard VGA 4-plane, 16-color graphics mode would hav
in his field, and a packed-pixel, 256-color graphics mode would specify 8 in this fi
The number of bits per pixel per plane can normally be derived by dividing the
BitsPerPixel field by the NumberOfPlanes field.

• The MemoryModel field specifies the general type of memory organization used
this mode. The following models have been defined:

D[3:31] Reserved

00h = Text mode

01h = CGA graphics

02h = Hercules graphics

03h = 4-plane planar

04h = Packed pixel
© 1999 ATI Technologies Inc. RAGE 128 Software Programming Manual
Proprietary and Confidential D-9

Function 01h - Return Super VGA Mode Information

ect

is

 0.

tion
the

pixel.
etic.
, and

ith

 red,

 is
loaded
In version 1.1 and earlier of the VESA Super VGA BIOS Extension, OEM-defined Dir
Color video modes with pixel formats 1:5:5:5 and 8:8:8:8 were described as a Packed
Pixel model with 16, 24, and 32 bits per pixel, respectively.

• NumberOfBanks is the number of banks in which the scan lines are grouped. Th
field is set to 1.

• The BankSize field specifies the size of a bank, in units of 1KB. This field is set to

• The NumberOfImagePages field specifies the number of additional, complete
display images that will fit into the memory, at one time, in this mode. The applica
may load more than one image into the memory if this field is non-zero, and flip
display between the images.

• The Reserved field has been defined to support a future VESA BIOS extension
feature, and will always be set to 1 in this version.

• The RedMaskSize, GreenMaskSize, BlueMaskSize, and RsvdMaskSize fields
define the size, in bits, of the red, green, and value components of a direct color
A bit mask can be constructed from the MaskSize fields, using simple shift arithm
For example, the MaskSize values for a Direct Color 5:6:5 mode would be 5, 6, 5
0, for the red, green, blue, and Reserved fields, respectively.

• The RedFieldPosition, GreenFieldPosition, BlueFieldPosition, and
RsvdFieldPosition fields define the bit position within the direct color pixel or YUV
pixel of the lsb of the respective color component. A color value can be aligned w
its pixel field by shifting the value left by the FieldPosition. For example, the
FieldPosition values for a Direct Color 5:6:5 mode would be 11, 5, and 0, for the
green, blue, and Reserved fields, respectively.

• The DirectColorModeInfo field describes important characteristics of direct color
modes. Bit D0 specifies whether the color ramp of the DAC is fixed or
programmable. If the color ramp is fixed, it cannot be changed. If the color ramp
programmable, it is assumed that the red, green, and blue lookup tables can be
using a standard VGA DAC color registers BIOS call (AX=1012h). Bit D1 specifies
whether the bits in the Rsvd field of the direct color pixel can be used by the
application, or are Reserved, and thus unusable.

05h = Non-chain 4, 256 color

06h = Direct Color

07h = YUV

08:0Fh = Reserved, to be defined by VESA

10:FFh = To be defined by OEM
RAGE 128 Software Programming Manual © 1999 ATI Technologies Inc.
D-10 Proprietary and Confidential

Function 01h - Return Super VGA Mode Information

ble,

efore
e the
• The PhysBasePtr is a 32-bit physical address of the start of frame buffer memory
when the controller is in flat frame buffer memory mode. If this mode is not availa
then this fields will be zero.

• The OffScreenMemOffset is a 32-bit offset from the start of frame buffer memory.
Extra off-screen memory that is needed by the controller may be located either b
or after this off-screen memory, be sure to check OffscreenMemSize to determin
amount of off-screen memory which is available to the application.

• The OffScreenMemSize contains the amount of available, contiguous off-screen
memory in 1k units, which can be used by the application.

D0 Color ramp is fixed/programmable:
0 = color ramp is fixed
1 = color ramp is fixed

D1 Bits in Rsvd field are usable/Reserved:
0 = bits in Rsvd field are Reserved
1 = bits in Rsvd field are usable by the application
© 1999 ATI Technologies Inc. RAGE 128 Software Programming Manual
Proprietary and Confidential D-11

Function 02h - Set Super VGA Video Mode
D.5 Function 02h - Set Super VGA Video Mode

This function initializes a video mode. The BX register contains the mode to set.

Input: AH = 4Fh Super VGA support

AL = 02h Set Super VGA video mode
BX = Video mode

D[0:8] = Video mode
D[9-13] = Reserved (must be 0)
D14 = frame buffer model:

0 = use windowed frame buffer model
1 = use linear/flat frame buffer model

D15 = Clear memory flag:
0 = clear video memory
1 = don’t clear video memory

ES:DI = Pointer to 256-byte buffer

Output: AX Status

Comments: All other registers are preserved.
RAGE 128 Software Programming Manual © 1999 ATI Technologies Inc.
D-12 Proprietary and Confidential

Function 03h - Return Current Video Mode
D.6 Function 03h - Return Current Video Mode

This function returns the current video mode in BX.

Input: AH = 4Fh Super VGA support

AL = 03h Return current video mode

Output: AX = Status

BX =
Current video mode

D[0-13] = Video mode
D14 = 0, use windowed frame buffer model

= 1, use linear/flat frame buffer model

D15 = 0, clear video memory
 = 1, don’t clear video memory

Comments: All other registers are preserved.
© 1999 ATI Technologies Inc. RAGE 128 Software Programming Manual
Proprietary and Confidential D-13

Function 04h - Save/Restore State

ller
D.7 Function 04h - Save/Restore State

This function provides a complete mechanism to save and restore the display contro
hardware state.

Input: AH = 4Fh Super VGA support

AL = 04h Save and restore state
DL = 00h

01h
02h

Return Save/Restore state buffer size
Save state
Restore state

CX = Requested states
D0 = Save/Restore controller hardware state
D1 = Save/Restore BIOS state
D2 = Save/Restore DAC state
D3 = Save/Restore Register state

ES:BX = Pointer to buffer (if DL <> 00h)

Output: AX = Status
BX = Number of 64-byte blocks to hold the state buffer (if DL = 00h)

Comments: All other registers are preserved.
RAGE 128 Software Programming Manual © 1999 ATI Technologies Inc.
D-14 Proprietary and Confidential

Function 05h - Display Window Control

rame
ction

e
tion
he
des
fter

 the
or
D.8 Function 05h - Display Window Control

This function sets or gets the position of the specified display window or page in the f
buffer memory by adjusting the necessary hardware paging registers. To use this fun
properly, the software should use VESA BIOS Function 01h (Return Super VGA mode
information) to determine the size, location, and granularity of the windows.

Notes:

• This function is also directly accessible through a far call from the application. Th
address of the BIOS function may be directly obtained by using VESA BIOS func
01h (return Super VGA mode information). Afield in the ModeInfoBlock contains t
address of this function. Note that this function may be different among video mo
in a particular BIOS implementation, so the function pointer should be obtained a
each set mode.

• In the far call version, no status information is returned to the application. Also, in
far call version, the AX and DX registers will be destroyed. Therefore, if AX and/
DX must be preserved, the application must do so before making the call.

Input: AH = 4Fh Super VGA support
AL = 05h Super VGA display window control
BH = 00h Set memory window
BL = Window number:

0 = Window A
1 = Window B

DX = Window number in video memory (in window granularity units)

Output: AX Status

Comments: See notes below.

Input: AH = 4Fh Super VGA support
AL = 05h Super VGA display window control
BH = 01h Get memory window
BL = Window number:

0 = Window A
1 = Window B

Output: AX Status
DX = Window number in video memory (in window granularity units)

Comments: See notes below.
© 1999 ATI Technologies Inc. RAGE 128 Software Programming Manual
Proprietary and Confidential D-15

Function 05h - Display Window Control

),
is
• The application must load the input arguments in BH, BL, and DX (for set window
but does not need to load either AH or AL in order to use the far call version of th
function.
RAGE 128 Software Programming Manual © 1999 ATI Technologies Inc.
D-16 Proprietary and Confidential

Function 06h - Set/Get Logical Scan Line Length

et up
n

ons.

lue,
.

ve.
D.9 Function 06h - Set/Get Logical Scan Line Length

This function sets or gets the length of a logical scan line. It allows an application to s
a logical video memory buffer that is wider than the displayed area. Function 07h the
allows the application to set the starting position that is to be displayed.

Notes:

• The desired width, in pixels, may not be achievable because of hardware limitati
The next-larger value that will accommodate the desired number of pixels will be
selected, and the actual number of pixels will be returned in CX. BX returns a va
which when added to a pointer into video memory, will point to the next scan line

• The mach64 implementation only supports this function in 256 color mode and abo

Input: AH = 4Fh Super VGA support
AL = 06h Logical scan line length
BL =

=
00h
02h

Set scan line length in Pixel
Set scan line length in Byte

CX =
=

Desired width, in pixels (if BL = 00h)
Desired width, in byte (if BL = 02h)

Output: AX = Status
BX = Bytes per scan line

CX = Actual pixels per scan line
DX = Maximum number of scan lines

Comments: See notes below.

Input: AH = 4Fh Super VGA support
AL = 06h Logical scan line length
BL =

=
01h
03h

Get scan line length
Get maximum scan line length

Output: AX = Status
BX = Bytes per scan line
CX = Actual pixels per scan line

DX = Maximum number of scan lines

Comments: See notes below.
© 1999 ATI Technologies Inc. RAGE 128 Software Programming Manual
Proprietary and Confidential D-17

Function 07h - Set/Get Display Start

rom
that

ve.
D.10 Function 07h - Set/Get Display Start

This function selects the pixel to be displayed in the upper left corner of the display f
the logical page. This function can be used to pan and scroll around logical screens
are larger than the displayed screen. This function can also be used to rapidly switch
between two, different displayed screens for double-buffered animation effects.

Note:

• The mach64 implementation only supports this function in 256 color mode and abo

Input: AH = 4Fh Super VGA support
AL = 07h Display start control
BH = 00h Reserved, must be 0
BL =

=
00h
80h

Set display start
Set display start during vertical retrace

CX = First displayed pixel in scan line

DX = First displayed scan line

Output: AX = Status

BX = Bytes per scan line
CX = Actual pixels per scan line
DX = Maximum number of scan lines

Comments: See a note below.

Input: AH = 4Fh Super VGA support
AL = 07h Display start control
BH = 00h Reserved, must be 0
BL = 01h Get display start

Output: AX = Status

BH = Reserved, and will be 0
CX = First displayed pixel in scan line
DX = First displayed scan line

Comments: See a note below.
RAGE 128 Software Programming Manual © 1999 ATI Technologies Inc.
D-18 Proprietary and Confidential

Function 08h - Set/Get AC Palette Format

ACs
nd
GA
D.11 Function 08h - Set/Get AC Palette Format

This function manipulates the operating mode or format of the DAC palette. Some D
are configurable to provide 6 bits, 8 bits, or more of color definition per red, green, a
blue primary colors. The DAC palette width is assumed to be reset to the standard V
value of 6 bits per primary color during any mode set.

D.11.1Subfunction 0 - Set AC Palette Format

D.11.2Subfunction 1 - Get AC Palette Format

Input: AH = 4Fh VESA Extension
AL = 08h Set/Get AC Palette Format

BL = 00h Set AC Palette Format
BH = Desired bits of color per primary

Output: AX = Status
BH = Current number of bits of color per primary

Input: AH = 4Fh VESA Extension

AL = 08h Set/Get AC Palette Format
BL = 01h Get AC Palette Format

Output: AX = Status
BH = Current number of bits of color per primary
© 1999 ATI Technologies Inc. RAGE 128 Software Programming Manual
Proprietary and Confidential D-19

Function 09h - Set/Get AC Palette Data

D.12 Function 09h - Set/Get AC Palette Data

This required function is very important for any/all RAMDAC larger than a standard
VGA RAMDAC. The standard INT 10h BIOS Palette function calls assume standard
VGA ports and VGA palette widths. This function offers a palette interface that id
independent of the VGA assumptions.

Input: AH = 4Fh VESA Extension
AL = 09h Set/Get AC Palette Format
BL = 00h

01h
02h
03h
80h

Set Palette Data
Get Palette Data
Set Secondary Palette Data
Get Secondary Palette Data
Set Palette Data during Vertical Retrace with

Blank Bit on
CX = Number of palette registers to update (to a maximum of 256)
DX = First of the Palette registers to update (start)
ES:DI = Table of palette value

Output: AX = Status
RAGE 128 Software Programming Manual © 1999 ATI Technologies Inc.
D-20 Proprietary and Confidential

Power Management Services
D.13 Power Management Services

D.13.1VBE/PM Function 0 - Report VBE/PM Capabilities

D.13.2VBE/PM Function 1 - Set Display Power State

D.13.3VBE/PM Function 2 - Get Display Power State

Input: AH = 4Fh VESA Extension

AL = 10h VBE/PM Services
BL = 00h Report VBE/PM Capabilities
ES:DI = Null pointer; must be 0000:0000h in version 1.0 (Reserved for

future use).

Output: AX = Status
BH = Power saving state signals supported by the controller:

1 = supported,
0 = not supported

bit 0 = STANDBY
bit 1 = SUSPEND
bit 2 = OFF

BL =
VBE/PM Version number (0001 0000b for this version)
bits 0:3 = Minor Version number
bits 4:7 = Major Version number

ES:DI = Unchanged

Input: AH = 4Fh VESA Extension
AL = 10h VBE/PM Services

BL = 01h Set Display Power State

BH = Requested Power state:
00h =
01h =
02h =
04h =

ON
STANDBY
SUSPEND
OFF

Output: AX = Status

BH = Unchanged

Input: AH = 4Fh VESA Extension

AL = 10h VBE/PM Services
BL = 02h Get Display Power State

Output: AX = Status
© 1999 ATI Technologies Inc. RAGE 128 Software Programming Manual
Proprietary and Confidential D-21

Power Management Services
BH = Power state currently requested by the controller:
00h =
01h =
02h =
04h =

ON
STANDBY
SUSPEND
OFF
RAGE 128 Software Programming Manual © 1999 ATI Technologies Inc.
D-22 Proprietary and Confidential

Display Identification Extensions
D.14 Display Identification Extensions

The VESA VBE sub-function 15h is used to implement the VBE/DDC services. The
VBE/DDC services are defined below and are not included in the VBE Standard
documentation.

D.14.1VBE/DDC Function 0 - Report VBE/DDC Capabilities

Input: AH = 4Fh VESA Extension

AL = 15h VBE/DDC Services
BL = 00h Report DDC Capabilities
CX = 00h Controller unit number (00=primary controller)

ES:DI = Null pointer, must be 0:0 in version 1.0 (Reserved for future use).

Output: AX = Status
BH = Approximate time in seconds, rounded up, to transfer one EDID

block (128 byte)
BL = DDC level supported (*):

bit0 =0 DDC1 not supported;
=1 DDC1 supported;

bit1 =0 DDC2 not supported;
=1 DDC2 supported;

bit2 =0 Screen not blanked during data transfer (**);
=1 Screen blanked during data transfer.

CX = Unchanged

ES:DI = Unchanged

Comments: All other registers may be destroyed.
(*) DDC level supported by both the display and the controller.
(**) This refers to the behavior of the controller and the VBE/DDC SW.
© 1999 ATI Technologies Inc. RAGE 128 Software Programming Manual
Proprietary and Confidential D-23

Display Identification Extensions
D.14.2VBE/DDC Function 1 - Read EDID

Input: AH = 4Fh VESA Extension
AL = 15h VBE/DDC Services

BL = 01h Read EDID
CX = 00h Controller unit number (00=primary controller)
DX = 00h EDID block number. Zero is only a valid value in

version 1.0
ES:DI = Pointer to area in which the EDID block (128 bytes shall be

returned).

Output: AX = Status(*)
BH = Unchanged

CX = Unchanged
ES:DI = Pointer to area in which the EDID block is returned.

Comments: All other registers may be destroyed.
RAGE 128 Software Programming Manual © 1999 ATI Technologies Inc.
D-24 Proprietary and Confidential

phics
Appendix E
BIOS Hardware Configuration and

Multimedia Tables

E.1 Scope

This section describes Multimedia Table and Hardware Configuration Table for
multimedia devices in the graphics controller BIOS. The Multimedia table is used to
describe the on board multimedia hardware configuration. It only exists in AIW type
configuration products. The Hardware Configuration table is used to describe the gra
controller multimedia configuration.

For details about the “BIOS Multimedia Table” refer to page E-2.

For details about the “BIOS Hardware Configuration Table” refer to page E-8.

For details about the “BIOS Tables for RAGE 128 / RAGE THEATER Board” refer to
page E-10.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential E-1

ed

racters
an be

n 1.

ture
points
acting
r ID
E.2 BIOS Multimedia Table

The BIOS Multimedia table is used for any AIW type board and OEM solution equipp
with multimedia hardware. It specifies the configuration of the multimedia devices on
board. The table includes a header and a body. The header contains a unique 6 cha
signature, a revision byte and a table size byte. A pointer to the table byte 0 location c
derived from the ROM header table.

Currently, the BIOS table is defined as a 8 bytes header and 7 bytes body with revisio
Revision 0 of this table must not be used to build BIOS of any board that uses either
RAGE 128 or RAGE THEATER.

The Multimedia table field definitions are shown below in . Please note that the signa
is removed from the header to save ROM space. The ROM header table pointer still
to the byte 0 location. The table size and revision number can be calculated by subtr
1 and 2 respectively from the pointer. Besides the table header, a physical connecto
field and 5 video inputs are introduced.

Table E-1 Multimedia Table, Revision 1

Offset
(byte) Field Definition Code Description

- 2 Hardware info table revision

- 1 Hardware info table size
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
E-2 Proprietary and Confidential

0

Bit
[4:0]

Tuner Type

= 0, No Tuner Installed
= 1, Philips FI1236 MK1 NTSC M/N North America
= 2, Philips FI1236 MK2 NTSC M/N Japan
= 3, Philips FI1216 MK2 PAL B/G
= 4, Philips FI1246 MK2 PAL I
= 5, Philips FI1216 MF MK2 PAL B/G, SECAM L/L'
= 6, Philips FI1236 MK2 NTSC M/N North America
= 7, Philips FI1256 MK2 SECAM D/K
= 8, Philips FM1236 MK2 NTSC M/N North America
= 9, Philips FI1216 MK2 PAL B/G - External Tuner POD
= 10, Philips FI1246 MK2 PAL I - External Tuner POD
= 11, Philips FI1216 MF MK2 PAL B/G, SECAM L/L'
- External Tuner POD
= 12, Philips FI1236 MK2 NTSC M/N North America
- External Tuner POD
= 13, Temic FN5AL.RF3X7595 PAL I/B/G/DK & SECAM DK
= 14, Reserved
= 15, Reserved
= 16, Alps TSBH5 NTSC M/N North America
= 17, Alps TSC?? NTSC M/N North America
= 18, Alps TSCH5 NTSC M/N North America with FM
= 19-30, Reserved
= 31, Unknown Tuner Type

Bit
[7:5]

Video Input for
Tuner

= 0, Video input0
= 1, Video input1
= 2, Video input2
= 3, Video input3
= 4, Video input4
= 5 - 15, Reserved

Table E-1 Multimedia Table, Revision 1 (Continued)

Offset
(byte) Field Definition Code Description
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential E-3

1

Bit
[3:0]

Audio Chip
Type

= 0, Philips TEA5582 NTSC Stereo, no dbx, no volume
control
= 1, Mono with audio mux
= 2, Philips TDA9850 NTSC NA. Stereo, dbx, EEPROM,
mux, no volume
= 3, Sony CXA2020S Japan NTSC Stereo, mux, no volume
= 4, ITT MSP3410D Europe Stereo, volume, internal mux
= 5, Crystal CS4236B
= 6, Philips TDA9851 NTSC stereo, volume control,
no dbx, no mux
= 7, ITT MSP3415 (Europe)
= 8, ITT MSP3430 (NA)
= 9 - 14, Reserved
= 15, No Audio Chip Installed

Bit [4] Product Type
= 0, OEM Product
= 1, ATI Product

Bit
[7:5]

OEM Revision

2
Bit
[7:0]

Product ID
(defined as
OEM ID or ATI
board ID that
is dependent
on Product
Type
Setting)

= 0, ATI Prototype Board
= 1, ATI All in Wonder
= 2, ATI All in Wonder Pro, no MPEG/DVD decoder
= 3, ATI All in Wonder Pro, CD11 or similar MPEG/DVD
decoder on MPP
= 4, ATI All in Wonder Plus
= 5, ATI Kitchener Board
= 6, ATI Toronto Board (analog audio)
= 7, ATI TV-Wonder
= 8, ATI Victoria Board (RAGE XL plus RAGE THEATER)
= 9-255, Reserved

3

Bit
[1:0]

Tuner Voltage
Regulator
Control
Control

= 0, No Tuner Power down feature
= 1, Tuner Power down feature
= 2-3, Reserved

Bit
[3:2]

Hardware
Teletext
Support

= 0, No Hardware Teletext
= 1, Philips SAA5281
= 2-3, Reserved

Bit
[5:4]

FM Audio
Decoder

= 0, No FM Audio decoder
= 1, FM Audio decoder (Rohm BA1332F) installed
= 2-3, Reserved

Bit [6] Reserved

Bit [7]
Audio
Scrambling

= 0, Not Supported
= 1, Supported

Table E-1 Multimedia Table, Revision 1 (Continued)

Offset
(byte) Field Definition Code Description
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
E-4 Proprietary and Confidential

4

Bit [0]
I2S Input
Configuration

= 0, Not Supported
= 1, Supported

Bit [1]
I2S Output
Configuration

= 0, Not Supported
= 1, Supported

Bit
[[3:2]

I2S Audio
Chip

= 0, TDA1309_32Strap.
= 1, TDA1309_64Strap
= 2, ITT MSP3430
= 3, ITT MSP3415
= 4-7 Reserved

Bit [5]
S/PDIF
Output
Configuration

= 0, Not Supported
= 1, Supported

Bit
[7:6]

Reserved

5

Bit
[[3:0]

Video
Decoder Type

= 0, No Video Decoder
= 1, Bt819
= 2, Bt829
= 3, Bt829A
= 4, Philips SA7111
= 5, Philip SA7112, or SA7112A
= 6, RAGE THEATER
= 7-15, Reserved

Bit
[7:4]

Video-In
Standard /
Crystal

= 0, NTSC and PAL Crystals Installed (for Bt8xx)
= 1, NTSC Crystal Only (for Bt8xx)
= 2, PAL Crystal Only (for Bt8xx)
= 3, NTSC, PAL, SECAM single crystal for Bt829 & BT879
= 4, 28.63636 MHz Crystal
= 5, 29.49892713 MHz Crystal
= 6, 27.0 MHz Crystal
= 7, 14.31818 MHz Crystal
= 8-15, Reserved

6

Bit
[2:0]

Video
Decoder Host
Config

= 0, I2C Device
= 1, MPP Device
= 2, 2 bits VIP Device
= 3, 4 bits VIP Device
= 4, 8 bits VIP Device
= 5-6, Reserved
= 7, PCI Device

Bit
[7:3]

Reserved

Table E-1 Multimedia Table, Revision 1 (Continued)

Offset
(byte) Field Definition Code Description
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential E-5

7

Bit
[1:0]

Video Input0
Type

= 0, Unused / Invalid
= 1, Tuner Input
= 2, Composite Input
= 3, S-Video Input

Bit [2]
Video Input0
F/B setting

= 0, Front Connector
= 1, Rear Connector

Bit
[5:3]

Physical Connector ID

Bit
[7:6]

Reserved

8

Bit
[1:0]

Video Input1
Type

= 0, Unused / Invalid
= 1, Tuner Input
= 2, Composite Input
= 3, S-Video Input

Bit [2]
Video Input1
F/B setting

= 0, Front Connector
= 1, Rear Connector

Bit
[5:3]

Physical Connector ID

Bit
[7:6]

Reserved

9

Bit
[1:0]

Video Input2
Type

= 0, Unused / Invalid
= 1, Tuner Input
= 2, Composite Input
= 3, S-Video Input

Bit [2]
Video Input2
F/B setting

= 0, Front Connector
= 1, Rear Connector

Bit
[5:3]

Physical Connector ID

Bit
[7:6]

Reserved

10

Bit
[1:0]

Video Input3
Type

= 0, Unused / Invalid
= 1, Tuner Input
= 2, Composite Input
= 3, S-Video Input

Bit [2]
Video Input3
F/B setting

= 0, Front Connector
= 1, Rear Connector

Bit
[5:3]

Physical Connector ID

Bit
[7:6]

Reserved

Table E-1 Multimedia Table, Revision 1 (Continued)

Offset
(byte) Field Definition Code Description
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
E-6 Proprietary and Confidential

 the
sible
Video decoder device offers a certain input selection that defines the video input and
combination of composite and S-video source. The following table maps out the pos
video selection for each decoder type used by ATI products.

11

Bit
[1:0]

Video Input4
Type

= 0, Unused / Invalid
= 1, Tuner Input
= 2, Composite Input
= 3, S-Video Input

Bit [2]
Video Input4
F/B setting

= 0, Front Connector
= 1, Rear Connector

Bit
[5:3]

Physical Connector ID

Bit
[7:6]

Reserved

Table E-2 ATI-used decoder types and its video selections

BT819/829 BT829A/B RAGE THEATER

Video Input0 Mux0 C/SV Mux0 C/SV Comp0 C

Video Input1 Mux1 C/SV Mux1 C/SV Comp1 C

Video Input2 Mux2 C/SV Mux2 C/SV Comp2 C

Video Input3 X - Mux3 C/SV Comp3 C/SV

Video Input4 X - X - Comp4 C/SV

C/SV -Composite/S-Video. C can be used for tuner source or composite source.
For BT8x9, only one S-Video can be selected

Table E-1 Multimedia Table, Revision 1 (Continued)

Offset
(byte) Field Definition Code Description
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential E-7

E.3 BIOS Hardware Configuration Table

Table E-3 Hardware Configuration Table

Offset
(byte) Field Definition Code Description

0 - 3 Hardware info table signature string "$ATI”

4 Hardware info table revision

5 Hardware info table size

6

Bits
[3:0]

I2C_Type

= 0, Normal GP_IO (I2C data=GP_IO2, clock=GP_IO1
= 1, ImpactTV GP_IO
= 2, Dedicated I2C Pin
= 3, GPIO (I2C data=GP_IO12, clock=GP_IO13
= 4, GPIO (I2C data=GPIO12, clock=GPIO10
= 5, RAGE THEATER I2C Master
= 6, Using Rage128 MPP2 Pin (MPP2 is not used in this
configuration)
= 7-14, Reserved
= 15, No I2C Configuration

Bits
[7:4]

Reserved

7

Bits
[3:0]

TVOut
Support

= 0, No TVOut supported
= 1, ImpactTV1 supported
= 2, ImpactTV2 supported
= 3, Improve Impact TV2 supported
= 4, RAGE THEATER supported
= 5-15, Reserved

Bits
[6:4]

Video Out
Crystal
Frequency

= 0, TVOut not Installed
= 1, 28.63636 MHz Crystal
= 2, 29.49892713 MHz Crystal
= 3, 27.0 MHz Crystal
= 4, 1431818 MHz Crystal
= 5-7, Reserved

Bit 7
Impact TV
Data Port

= 0, MPP1
= 1, MPP2
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
E-8 Proprietary and Confidential

8

Bit 0
Video Port
Capability

= 0, AMC/DVS0 Video Port (VP) un-supported
= 1, AMC/DVS0 VP supported

Bit 1
= 0, ZV VP un-supported.
= 1, Zoom Video (ZV) VP supported

Bit 2
= 0, AMC/DVS1 not supported
= 1, AMC/DVS1 supported.

Bit 3
= 0, VIP 16 bit not supported
= 1, VIP 16 bit supported.

Bits
[7:4]

Reserved

9

Bits
[3:0]

Host Port
Configuration

= 0, No Host Port
= 1, MPP Host Port
= 2, 2 bit VIP Host Port
= 3, 4 bit VIP Host Port
= 4, 8 bit VIP Host Port
= 5-15, Reserved

Bits
[7:4]

Reserved

Table E-3 Hardware Configuration Table (Continued)

Offset
(byte) Field Definition Code Description
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential E-9

 ID

as
E.4 BIOS Tables for RAGE 128 / RAGE THEATER Board

E.4.1 Multimedia Table

Please note the OEM default setting. The OEM default profile is defined when OEM
(Product ID) is equal 10 and OEM revision is equal 0. These conditions provide for
Multimedia table field values to be within the predefined seeing range and avoid any
OEM-specific configurations. If there is an OEM-specific setting, an OEM ID as well
an OEM revision must be defined.

Table E-4 RAGE 128 / RAGE THEATER board Multimedia table

Offset
(bytes) Field Definition OEM

Default
Kitchener
NA

Toronto
NA

Victoria
NA

AIWPro
NA

- 2 1 1 1 1 1

- 1 12 12 12 12 12

0 Bit [4:0]
Bit [7:5]

Tuner Type
Video Input for
Tuner

X

X

6

0

6

0

6

0

6

0

1 Bit [3:0]
Bit [4]
Bit [7:5]

Audio Chip Type
Product Type
OEM Revision

X
0
0

2
1
0

8
1
0

1
0

2
1
0

2 Bit [7:0] Product ID 10 5 6 8 2

3 Bit [1:0]

Bit [3:2]

Bit [5:4]
Bit [6]
Bit [7]

Tuner Voltage
Regulator Control
Hardware Teletext
Support
FM Audio Decoder
Reserved
Audio Scrambling

X

X
X
X
X

0

0
0
0
0

0

0
0
0
0

0

0
0
0
0

1

0
0
0
0

4 Bit [0]

Bit [1]

Bit [4:2]
Bit [5]

Bit [7:5]

I2S Input
Configuration
I2S Output
Configuration
I2S Audio Chip
S/PDIF
Configuration
Reserved

0

0
0

0
0

0

0
0

0
0

1

0
2

1
0

0

0
0

0
0

0

0
0

0
0

5
Bit [3:0]
Bit [7:4]

Video Decoder Type
VideoIn
Standard/Crystal

X
X

3
1

6
5

6
6

3
1

6 Bit [2:0]

Bit [7:3]

Video Decoder Host
Config
Reserved

0
0

0
0

2
0

1
0

0
0

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
E-10 Proprietary and Confidential

7 Bit [1:0]
Bit [2]

Bit [5:3]

Bit [7:6]

Video Input0 Type
Video Input0 F/B
setting
Physical Connector
ID
Reserved

X

0

0
0

1

0

0
0

1

0

0
0

1

0

0
0

1

0

0
0

8 Bit [1:0]
Bit [2]

Bit [5:3]

Bit [7:6]

Video Input1 Type
Video Input0 F/B
setting
Physical Connector
ID
Reserved

X

0

0
0

3

0

0
0

0

0

0
0

0

0

0
0

3

0

0
0

9 Bit [1:0]
Bit [2]

Bit [5:3]

Bit [7:6]

Video Input2 Type
Video Input0 F/B
setting
Physical Connector
ID
Reserved

X

0

0
0

2

0

0
0

2

0

0
0

2

0

0
0

2

0

0
0

10 Bit [1:0]
Bit [2]

Bit [5:3]

Bit [7:6]

Video Input3 Type
Video Input0 F/B
setting
Physical Connector
ID
Reserved

0

0

0
0

0

0

0
0

0

0

0
0

0

0

0
0

0

0

0
0

11 Bit [1:0]
Bit [2]

Bit [5:3]

Bit [7:6]

Video Input4 Type
Video Input0 F/B
setting
Physical Connector
ID
Reserved

0

0

0
0

0

0

0
0

3

1

0
0

3

1

0
0

0

0

0
0

Table E-4 RAGE 128 / RAGE THEATER board Multimedia table (Continued)

Offset
(bytes) Field Definition OEM

Default
Kitchener
NA

Toronto
NA

Victoria
NA

AIWPro
NA
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential E-11

E.4.2 Hardware Configuration Table

Table E-5 RAGE 128 / RAGE THEATER board Hardware Configuration table

Offset
(bytes) Field Description

Default (without MM) Default (with MM)

RAGE
PRO /
XL/XC

LT
PRO

RAGE
Mobility

RAGE
128

RAGE
PRO

LT
PRO
/ XL

RAGE
Mobility

RAGE
128

0 -3 Table Signature $ATI $ATI $ATI $ATI $ATI $ATI $ATI $ATI

4 Revision 2 2 2 2 2 2 2 2

5 Table size 10 10 10 10 10 10 10 01

6
Bit [3:0]
Bit [7:4]

I2C_Type
Reserved

2
0

0
0

15
0

2
0

2
0

3
0

3
0

2
0

7

Bit [3:0]
Bit [6:4]
Bit [7]

TVOut Support
Crystal Frequency
Impact TV data
Port

0
0

0

3
0

0

3
0

0

2
1

0

0
0

0

3
0

0

3
0

0

2
1

0

8

Bit [0]
Bit [1]
Bit [2]
Bit [3]
Bit [7:4]

AMC/DVS0 Port
Zoom Video Port
AMC/DVS1 Port
VIP 16 bit Port
Reserved

1
0
0
0
0

0
1
0
0
0

0
1
0
0
0

1
0
0
0
0

1
0
0
0
0

0
1
0
0
0

0
1
0
0
0

1
0
0
0
0

9
Bit [3:0]

Bit [7:4]

Host Port
Configuration
Reserved

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
E-12 Proprietary and Confidential

 2D
Appendix F
CCE Command Packets

F.1 Scope

This section provides a summary of the CCE command packets. In CCE mode,
programming the RAGE 128 does not require writing directly to the registers to draw
or 3D images. Instead, the data is prepared in the format of CCE Command Packets in
system memory, and the hardware microengine does the work of drawing.

There are four types of CCE command packets:

• Type 0

• Type 1

• Type 2

• Type 3

A CCE command packet consists of:

• A packet header, identified by field HEADER. The packet header defines the
operations to be carried out by the CCE microengine.

• An information body, identified by IT_BODY, that follows the header. The
information body contains the data to be used by the engine in carrying out the
operation.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-1

that

 a
F.2 Notation used this Section

• Brackets are used [] to denote a DWORD in a packet.

• Braces { } are used to denote a size-varying field that may consist of a number of
DWORDs.

• If a DWORD is shared by more than one field, the fields are separated by ‘|’.

• The field that appears on the far left takes the most significant bits, and the field
appears on the far right takes the least significant bits.

• For example: DWORD [HI_WORD | LO_WORD] denotes that HI_WORD is
defined on bits 31:16, and LO_WORD on bits 15:0.

• A C-style notation of referencing an element of a structure refers to a subfield of
main field.

• For example: MAIN_FIELD.SUBFIELD refers to the subfield SUBFIELD of
MAIN_FIELD.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-2 Proprietary and Confidential

Type-0 CCE Packet

t
g of
4.1 Type-0 CCE Packet
Purpose: For writing N DWORDs in the information body to the N consecutive registers

(or to the register) that is pointed to by the BASE_INDEX field of the packe
header. The use of this type of packet requires the complete understandin
the registers to be written.

Table 4-3 Format for a Type-0 CCE Packet

Ordinal Field Name

1 [HEADER]

2 [REG_DATA_1]

3 [REG_DATA_2]

N+1 [REG_DATA_N]

Table 4-4 Header Fields for a Type-0 CCE Packet

Bit(s) Field Name Description

10:0 BASE_INDEX
Memory-mapped address (in units of DWORDs)
of the first register to be written.

14:11 Reserved N/A

15 ONE_REG_WR
0 - Write the data to N consecutive registers.
1 - Write all the data to the same register.

Type-0 Packet

0123456789
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

BASE_INDEX0 0 COUNT a

REG_DATA_2

…

REG_DATA_n

Bit position

Packet Header

IT_BODY

REG_DATA_1

Figure 4-1. Type 0 CCE Packet
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-3

Type-0 CCE Packet
29:16 COUNT
Count of DWORDs in the information body. Its
value should be N-1 if there are N DWORDs in
the information body.

31:30 TYPE Packet identifier. It should be 0.

Table 4-5 Information Body for a Type-0 CCE Packet

Bit(s) Field Name Description

31:0 REG_DATA_x
The bits correspond to those defined for the
relevant register. See the RAGE 128 Register
Reference for details.

Table 4-4 Header Fields for a Type-0 CCE Packet

Bit(s) Field Name Description
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-4 Proprietary and Confidential

Type-0 CCE Packet

2.
F.3 Type 1 CCE Packet

Purpose: For writing REG_DATA_1 and REG_DATA_2 in the information body
respectively to the registers pointed to by REG_INDEX1 and REG_INDEX

Table 4-6 Format for a Type 1 CCE Packet

Ordinal Field Name

1 [HEADER]

2 [REG_DATA_1]

3 [REG_DATA_2]

Table 4-7 Header Fields for a Type 1 CCE Packet

Bit(s) Field Name Description

10:0 REG_INDEX1
The field points to a memory-mapped register
that REG_DATA_1 is written to.

21:11 REG_INDEX2
The field points to a memory-mapped register
that REG_DATA_2 is written to.

29:22 Reserved N/A

31:30. TYPE Packet identifier. It should be 1.

Type-1 Packet

0123456789
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

REG_INDEX10 1 Reserved REG_INDEX2

REG_DATA_2

Bit position

Packet Header

IT_BODY
REG_DATA_1

Figure 4-2. Type 1 CCE Packet
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-5

Type-0 CCE Packet
Table 4-8 Information Body for a Type 1 CCE Packet

Bit(s) Field Name Description

31:0 REG_DATA_x
The bits correspond to those defined for the
relevant register. See the RAGE 128 Register
Reference for details.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-6 Proprietary and Confidential

Type-0 CCE Packet

r

tant
F.4 Type 2 CCE Packet

Purpose: For filling up the trailing space left when the allocated buffer for a packet, o
packets, is not fully filled.

This allows the microengine to skip the trailing space and to fetch the next
packet. This is a filler packet. It has only the header. Its content is not impor
except for bits 30 and 31.

Table 4-9 Format of a Type 2 CCE Packet

Ordinal Field Name

1 [HEADER]

Table 4-10 Header Fields of a Type 2 CCE Packet

Bit(s) Field Name Description

29:0 reserved N/A

31:30 TYPE
Packet identifier. It
should be 2.

Type-2 Packet

0123456789
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Reserved1 0

Bit position

Packet Header

Figure 4-3. Type 2 CCE Packet
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-7

Type-0 CCE Packet

 of
E.
 of

F.5 Type 3 CCE Packet

Purpose: For carrying out the operation indicated by field IT_OPCODE.

Type-3 packets have a common format in their headers. However, the size
their information body may vary depending on the value of field IT_OPCOD
The size of the information body is indicated by the field COUNT. If the size
the information is N DWORDs, the value of COUNT is N-1. In the following
packet definitions, we will describe the field IT_BODY for each packet with
respect to a given IT_OPCODE, and omit the header.

t

Table 4-11 Formal for a Type 3 CCE Packet

Ordinal Field Name

1 [HEADER]

2
{IT_BODY}
Information Body

Table 4-12 Header Fields for a Type 3 CCE Packet

Bit(s) Field Name Description

7:0 reserved
This field is undefined and is set to zero by
default.

Type-3 Packet

0123456789
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Reserved1 1 COUNT IT_OPCODE

DATA_2

…

DATA_n

Bit position

Packet Header

IT_BODY

DATA_1

Figure 4-4. Type 3 CCE Packet
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-8 Proprietary and Confidential

Type-0 CCE Packet
15:8 IT_OPCODE
Operation to be carried out. See section B.2
for details.

29:16 COUNT
Number of DWORDs - 1 in the information
body. It is N-1 if the information body contains
N DWORDs.

31:30 TYPE Packet identifier. It should be 3.

Table 4-12 Header Fields for a Type 3 CCE Packet

Bit(s) Field Name Description
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-9

Type-0 CCE Packet
F.6 Summary of the CEE Packets

Table 4-13 Summary of the CEE Packets

Packet Name IT_
OPCODE Description

NOP 0x10 Skip N DWORDs to get to the next packet.

PAINT 0x91
Paint a number of rectangles with a color
brush.

SMALL_TEXT 0x93
Draw a string of small characters on the
screen.

HOSTDATA_BLT 0x94
Draw a string of large characters on the
screen, or copy a number of bitmaps to the
video memory.

POLYLINE 0x95
Draw a polyline (lines connected with their
ends).

SCALE 0x96
Scale the given rectangular screen area by a
factor. This packet is used by both 2D and 3D
operations.

TRANS_SCALE 0x97

A transparent scaling operation in which the
information of the source rectangle mixes with
the destination. This packet is actually used
only by 3D graphics.

POLYSCANLINES 0x98 Draw polyscanlines or scanlines.

NEXTCHAR 0x19
Print a character at a given screen location
using the default foreground and background
colors.

PLY_NEXTSCAN 0x1D Draw polyscanlines using current settings.

SET_SCISSORS 0x1E Set up scissors.

SET_MODE_24BPP 0x1F Set the 24bpp mode flag.

PAINT_MULTI 0x9A

Paint a number of rectangles on the screen
with one color. The difference between this
function and PAINT is the representation of
parameters.

BITBLT_MULTI 0x9B
Copy a number of source rectangles to
destination rectangles of the screen
respectively.

TRANS_BITBLT 0x9C 2D transparent bitblt operation.

3D_RNDR_GEN_INDX_PRIM 0x23 Draw 3D objects using the vertex walker.

3D_RNDR_GEN_PRIM 0x25
Draw 3D points, lines, triangles, strips, fans
using the ring buffer.

LOAD_PALETTE 0x2C Load a palette onto RAGE 128 for 2D scaling.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-10 Proprietary and Confidential

Type-0 CCE Packet
PURGE 0x2D Purge the pixel cache.

NEXT_VERTEX_BUNDLE 0x2E
Add more vertices to the end of a
3D_RNDR_GEN_INDX_PRIM packet.

Table 4-13 Summary of the CEE Packets (Continued)

Packet Name IT_
OPCODE Description
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-11

Type-0 CCE Packet
F.7 2D Packets

GUI_CONTROL

This subfield will be used to setup the RAGE 128 (register DP_GUI_MASTER_CNTL),
and it also decides the content of SETTINGS.SETUP_BODY.

Table 4-14 Information Body (IT_BODY) of 2-D packets

Ordinal Field Name

1 {SETTINGS}

2 {DATA_BLOCK}

Table 4-15 SETTINGS FIELD for the IT_BODY

Ordinal Field Name

1 [GUI_CONTROL]

2 {SETUP_BODY}

Table 4-16 GUI_CONTROL Subfield for the SETTINGS Field

Bit(s) Field Name Description

0 SRC_PITCH_OFF

The bit controls the pitch and offset of the blitting source.
0 - Use the default pitch and offset, and no datum
[SRC_PITCH_OFFSET] is supplied in SETUP_BODY.
1 - Use the datum [SRC_PITCH_OFFSET] supplied in
SETUP_BODY to set up a new pitch offset.

1 DST_PITCH_OFF

The bit controls the pitch and offset of the blitting
destination.
0 - Use the default pitch and offset, and no datum
[DST_PITCH_OFFSET] is supplied in SETUP_BODY
1 - Use the datum [DST_PITCH_OFFSET] supplied in
SETUP_BODY. The pitch may mean the bitmap pitch and
the offset may point to the off screen area of video
memory.

2 SRC_CLIPPING

This bit controls the clipping parameters of the blitting
source.
0 - Use the default clipping parameters, and no relevant
clipping data supplied in SETUP_BODY.
1 - Use datum [SRC_SC_BOT_RITE] supplied in
SETUP_BODY to set up the bottom and right edges of the
clipping rectangle.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-12 Proprietary and Confidential

Type-0 CCE Packet
3 DST_CLIPPING

This bit controls the clipping parameters of the blitting
destination.
0 - Use the default clipping parameters, and no relevant
clipping data supplied in SETUP_BODY.
1 - Use data [SC_TOP_LEFT] and
[SC_BOTTOM_RIGHT] supplied in SETUP_BODY to set
up a new clipping rectangle.

7:4 BRUSH_TYPE

Types of brush used in drawing. The type code
determines how to supply data to the subfield
BRUSH_PACKET in SETUP_BODY. See detailed
definition of BRUSH_TYPE in the following.

11:8 DST_TYPE

The pixel type of the destination.
0, 1 - (reserved)
2 - 8 bpp pseudocolor
3 - 16 bpp aRGB 1555
4 - 16 bpp RGB 565
5 - 24 bpp RGB
6 - 32 bpp aRGB 8888
7 - 8 bpp RGB 332
8 - Y8 greyscale
9 - RGB8 greyscale (8 bit intensity, duplicated for all 3
channels. Green channel is used on writes)
10 - (reserved)
11 - YUV 422 packed (VYUY)
12 - YUV 422 packed (YVYU)
13 - (reserved)
14 - aYUV 444 (8:8:8:8)
15 - aRGB4444 (intermediate format only. Not understood
by the Display Controller)
Note: choices 7-15 are only valid in 3D mode

13:12 SRC_TYPE

The field indicates the pixel type of blitting source.
0 - The source data type is mono opaque, and the fore-
and back-ground colors need to be redefined.
1 - The source data type is mono transparent, and only
the foreground color needs to be redefined.
2 - Reserved.
3 - The source pixel type is the same as that given in field
DST_TYPE.

14 PIX_ORDER

The bit decides the order of bits (or pixels) in DWORD to
be consumed. Only applicable to monochrome mode.
0 - Bits to be consumed from the Most Significant Bit
(MSB) to the Least Significant Bit (LSB).
1 - Bits to be consumed from LSB to MSB.

Table 4-16 GUI_CONTROL Subfield for the SETTINGS Field (Continued)

Bit(s) Field Name Description
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-13

Type-0 CCE Packet

7 of
SETUP_BODY
This field may contain the following subfields. Their presence depends on the bits 0-
SETTINGS.GUI_CONTROL.

15 COLOR_CONVT
YUV to RGB conversion temperature
0 - Red at 6500K, GB at 9300K
1 - RGB at 9300K

23:16 WIN31_ROP

This field tells the GUI engine how the raster operation is
to be carried out. The code of this field follows the ROP3
code defined by Microsoft. See Windows 3.1 DDK for
reference.

26:24 SRC_LOAD

The field indicates where the source data come from.
0, 1 - Reserved
2 - loaded from video memory (rectangular trajectory)
3 - loaded through the HOSTDATA registers (linear
trajectory)
4 - loaded through the HOSTDATA registers (linear
trajectory and byte-aligned)
Note that during 3D/Scale Operations (whenever
SCALE_3D_FCN@MISC_3D_STATE_REG is non-zero),
this field is ignored and data is always loaded from the
3D/Scaler pipeline.

27
GMC_3D_FCN_EN(Re

served)

0 - clear SCALE_3D_FCN,Z_EN and STENCIL_EN fields
1 - leave SCALE_3D_FCN,Z_EN, and STENCIL_EN
fields alone

28
GMC_CLR_CMP_FCN

_DIS

0 - No change to CLR_CMP_FCN_SRC and
CLR_CMP_FCN_DST
1 - clear CLR_CMP_FCN_DST and
CLR_CMP_FCN_SRC to 0

29 GMC_AUX_CLIP_DIS
0 - No change to AUXn_SC_ENB
1 - clear all AUXn_SC_ENB bits to 0

30 GMC_WR_MSK_DIS
0 - No Change to DP_WR_MSK/CLR_CMP_MSK
1 - Set DP_WR_MSK/CLR_CMP_MSK to 0xFFFFFFFF

31 BRUSH_FLAG

This field indicates whether there is a field BRUSH_Y_X
field in SETTINGS.SETUP_BODY.
0 - No such a field in SETTINGS.SETUP_BODY.
1 - There is a field in SETTINGS.SETUP_BODY.

Table 4-16 GUI_CONTROL Subfield for the SETTINGS Field (Continued)

Bit(s) Field Name Description
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-14 Proprietary and Confidential

Type-0 CCE Packet
Table F-1 SETUP_BODY Subfield for the SETTINGS Field

Ordinal Field Name Description

1
[SRC_PITCH_

OFFSET]

[20:0] - offset address in units of 32 bytes. This address points to
the memory reference location of the source rectangle.
[30:21] - pitch size (in units of 8 pixels) of the source. Note that in
monochrome mode the source pitch must be a multiple of 128
pixels. In 8bpp mode, source pitch must be a multiple of 16
pixels.
[31] - this is a flag bit that indicates whether the source memory
is in “tiled” format. 1: Tiled format; 0: not a tiled format.

2
[DST_PITCH_

OFFSET]

[20:0] - offset address in the unit of 32 bytes. This address points
to the memory reference location of the destination rectangle.
[30:21] - pitch size (in unit of 8 pixels) of the destination. Note
that in monochrome mode the destination pitch must be a
multiple of 128 pixels. In 8bpp mode, source pitch must be a
multiple of 16 pixels.
[31] - this is a flag bit that indicates whether the destination
memory is in “tiled” format. 1: Tiled format; 0: not a tiled format.

3 [SRC_SC_BOT_RITE]

The parameters are used to setup the clipping area of the
source. The implied coordinates of the top-left corner of the
clipping rectangle is the same as the source.
[13:0] - x-coordinate of the right edge of the clipping rectangle (in
number of pixels).
[29:16] - y-coordinate of the bottom edge of the clipping
rectangle (in number of scanlines).

4
[SC_TOP_LEFT]
[SC_BOT_RITE]

The parameters are used to setup the clipping area of
destination.
SC_TOP_LEFT:
[13:0] - x-coordinate of the left edge of the clipping rectangle (in
number of pixels).
[29:16] - y-coordinate of the top edge of the clipping rectangle (in
number of scanlines).
SC_BOT_RITE:
[13:0] - x-coordinate of the right edge of the clipping rectangle (in
number of pixels).
[29:16] - y-coordinate of the bottom edge of the clipping
rectangle (in number of scanlines).

5 {BRUSH_PACKET}
The content of this field is determined by field
SETTINGS.GUI_CONTROL.BRUSH_TYPE. See the following
table for the possible content.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-15

Type-0 CCE Packet
6 [BRUSH_Y_X]

[4:0] - x-coordinate for brush alignment.
[12:8] - y-coordinate for brush alignment.
[20:16] - Initial value used for BRUSH_X pointer in drawing
Lines. When POLY_LINE is off, it is reloaded from BRUSH_X at
the end of the line. When POLY_LINE is on , it is reloaded from
the current Brush pointer at the end of the line. Whenever
BRUSH_X is updated, the field should be written with the same
value.

Table F-2 SETTINGS for SETUP_BODY.BRUSH_PACKET

BRUSH
_TYPE Description of the brush Packet size Packet content

0

A 8 x 8 mono pattern with the foreground and
background colors specified in the packet. Here
the matrix is represented in the format
column-by-row.

4 DWORDs

[BKGRD_COLOR]
[FRGRD_COLOR]
[MONO_BMP_1]
[MONO_BMP_2]

1
A 8 x 8 mono pattern with the foreground color
specified in the packet and the background color
the same as that of the area to be painted.

3 DWORDs
[FRGRD_COLOR]
[MONO_BMP_1]
[MONO_BMP_2]

2
A 8 x 1 (8 columns by 1 row) mono pattern with
the foreground and background colors specified
in the packet.

3 DWORDs
[BKGRD_COLOR]
[FRGRD_COLOR]
[MONO_BMP_1]

3
A 8 x 1 mono pattern with the foreground color
specified in the packet and the background color
the same as that of the area to be painted.

2 DWORDs
[FRGRD_COLOR]
[MONO_BMP_1]

4
A 1 x 8 mono pattern with the foreground and
background colors specified in the packet.

3 DWORDs
[BKGRD_COLOR]
[FRGRD_COLOR]
[MONO_BMP_1]

5
A 1 x 8 mono pattern with the foreground color
specified in the packet and the background color
the same as that of the area to be painted.

2 DWORDs
[FRGRD_COLOR]
[MONO_BMP_1]

6
A 32 x 1 mono pattern with the foreground and
background colors specified in the packet.

3 DWORDs
[BKGRD_COLOR]
[FRGRD_COLOR]
[MONO_BMP_1]

7
A 32x1 mono pattern with the foreground color
specified in the packet and the background color
the same as that of the area to be painted.

2 DWORDs
[FRGRD_COLOR]
[MONO_BMP_1]

Table F-1 SETUP_BODY Subfield for the SETTINGS Field (Continued)

Ordinal Field Name Description
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-16 Proprietary and Confidential

Type-0 CCE Packet
8
A 32x32 mono pattern with the foreground and
background colors specified in the packet.

34 DWORDs

[BKGRD_COLOR]
[FRGRD_COLOR]
[MONO_BMP_1]

…
[MONO_BMP_32]

9
A 32x32 mono pattern with the foreground color
specified in the packet and the background color
the same as that of the area to be painted.

33 DWORDs

[FRGRD_COLOR]
[MONO_BMP_1]

…
[MONO_BMP_32]

10
A 8x8 color pattern. The pixel type is given by
the field
SETTINGS.GUI_CONTROL.DST_TYPE.

16*N DWORDs,
where N stands
for the number

of bytes per
pixel with

exception that a
24-BPP pixel is
still represented

by 4 bytes.

[COLOR_BMP_1]
[COLOR_BMP_2]

…
[COLOR_BMP_16*N]

11
A 8x1 color pattern. The pixel type is given by
field SETTINGS.GUI_CONTROL.DST_TYPE

2* N DWORDs

[COLOR_BMP_1]
[COLOR_BMP_2]

…
[COLOR_BMP_2*N]

12
A 1x8 color pattern. The pixel type is given by
field SETTINGS.GUI_CONTROL.DST_TYPE

2* N DWORDs

[COLOR_BMP_1]
[COLOR_BMP_2]

…
[COLOR_BMP_2*N]

13
Use the color specified in the packet as the solid
(plain) color for the brush, i.e. a color brush
without a pattern.

1 DWORD [FRGRD_COLOR]

14 reserved not applicable

15 No brush used. 0

Table F-3 Pixel size in bytes

SETTINGS for
GUI_CONTROL.DST_TYPE N

0-1 not applicable

2 1

3 2

Table F-2 SETTINGS for SETUP_BODY.BRUSH_PACKET (Continued)

BRUSH
_TYPE Description of the brush Packet size Packet content
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-17

Type-0 CCE Packet

DATA_BLOCK
The composition of this field depends on the operation code IT_OPCODE given in the
header. Section B.2 gives details of DATA_BLOCK with respect to IT_OPCODE. In the
following, the field SETTINGS may appear in the definition of a packet, but will not be
described further.

4 2

5 3

6 4

7 1

8-15 not applicable

Table F-4 Contents of Brush Packet

Field Name Description

[FRGRD_COLOR]

The foreground color of the text in RGBQUAD format.
[7:0] - intensity of Blue;
[15:8] - intensity of Green
[23:16] - intensity of Red.
[31:25] - reserved.

[BKGRD_COLOR]

The background color of the text in RGBQUAD format.
[7:0] - intensity of Blue;
[15:8] - intensity of Green
[23:16] - intensity of Red.
[31:25] - reserved.

[MONO_BMP_x]
Raster data of monochrome pixels. One bit represents one pixel. If the number
of pixels for the field is less than 32, the pixels take the lower bits. The
remaining bits should be filled with 0’s.

[COLOR_BMP_x] Raster data of color pixels. The representation depends on the pixel type.

Table F-3 Pixel size in bytes (Continued)

SETTINGS for
GUI_CONTROL.DST_TYPE N
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-18 Proprietary and Confidential

Type-0 CCE Packet
F.8 NOP

Packet Type: 2D

Purpose: For skipping a number of DWORDs to get to the next packet.

DATA BLOCK for NOP
This field may consists of a number of DWORDs, and the content may be anything.

Table F-5 format for NOP

Ordinal Field Name

1 [HEADER]

2 {DATA_BLOCK}
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-19

Type-0 CCE Packet
F.9 PAINT

Packet Type: 2D

Purpose: For painting a number of rectangles with a color brush.

Table F-6 Format for PAINT

Ordinal Field Name

1 [HEADER]

2 {SETTINGS}

3 {DATA_BLOCK}

Table F-7 DATA BLOCK for PAINT

Ordinal Field Name Description

1 [TOP_1 | LEFT_1]

The coordinates of the top-left corner of the 1st rectangle to be
painted.
LEFT_1: [15:0] - x-coordinate, ranging from -8192 to 8191. Bits
[14] and [15] should be copies of bit [13].
TOP_1: [31:16] - y-coordinate, ranging from -8192 to 8191. Bits
[30] and [31] should be copies of bit [29].

2 [BOTM_1 | RITE_1]

The coordinates of the bottom-right corner of the 1st rectangle to
be painted.
RITE_1: [15:0] - x-coordinate, ranging from -8192 to 8191. Bits [14]
and [15] should be copies of bit [13].
BOTM_1: [31:16] - y-coordinate, ranging from -8192 to 8191. Bits
[30] and [31] should be copies of bit [29].

…

2n-1 [TOP_n | LEFT_n]
The coordinates of the top-left corner of the n-th rectangle to be
painted.

2n [BOTM_n | RITE_n]
The coordinates of the bottom-right corner of the n-th rectangle to
be painted.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-20 Proprietary and Confidential

Type-0 CCE Packet

ked
F.10 SMALL_TEXT

Packet Type: 2D

Purpose: For printing a string of characters on the screen in the format of the bit-pac
Small Glyph.

Table F-8 Format for SMALL_TEXT

Ordinal Field Name

1 [HEADER]

2 {SETTINGS}

3 {DATA_BLOCK}

Table F-9 DATA_BLOCK for SMALL_TEXT

Ordinal Field Name Description

1 [FRGD_COLOUR]

The foreground color of the text in the RGBQUAD format.
BLUE: [7:0] - intensity of the blue component.
GREEN: [15:8] - intensity of the green component.
RED: [23:16] - intensity of the red component.
bits [31:25] - reserved.

2 [BAS_Y | BAS_X]

The base coordinates of the text rectangle in the screen coordinate
system. See the following illustration for details.
BAS_X: [15:0] - x-coordinate.
BAS_Y: [31:16] - y-coordinate.

3 {SMALLCHAR_1} The 1st character of the text.

…

n+2 {SMALLCHAR_n} The n-th character of the text, i.e., the last character.

Table F-10 DATA BLOCK for SMALLCHAR_x

Ordinal Field Name Description

1 [H | W | ∆Y | ∆X]

The geometry of the bitmap and the deviation of its top-left corner from
the base coordinates.
∆X: [7:0] - deviation from the base x-coordinate of the preceding glyph
∆Y: [15:8] - deviation from the base y-coordinate.
W: [23:16] - width of the character bitmap
H: [31:25] - height of the character bitmap.

2 [RASTER_1] The 1st DWORD of the mono bitmap data.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-21

Type-0 CCE Packet

t
Parameters H, W, ∆Y and ∆X
The relationship between the parameters and the reference coordinates BAS_X and
BAS_Y is shown in the following figure. In the figure, the starting position of text is a
(bas_x, bas_y). The actual sizes of characters ‘b’, ‘o’ and ‘y’ respectively are 4×8, 4×5
and 6×9. Therefore, the related parameters are:

• H1 = 8, W1 = 4, ∆x1 = 0, and ∆y1 = 8

• H2 = 5, W2 = 4, ∆x2 = 6, and ∆y2 = 5

• H3 = 9, W3 = 6, ∆x3 = 5, and ∆y3 = 5

…

m+1 [RASTER_m] The m-th DWORD of the mono bitmap data.

Table F-10 DATA BLOCK for SMALLCHAR_x (Continued)

Ordinal Field Name Description

(0, 0) x

y

∆x1

BAS_X

∆x2 ∆x3

∆y1

∆y2

∆y3

B
A

S
_Y W1

H1

H2

H3

W2 W3

Figure 4-5. Drawing Small Text
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-22 Proprietary and Confidential

Type-0 CCE Packet

ster
ture
RASTER_x
Raster_x represents the data block of a mono bitmap. The bitmap represents the ra
image of a character. This data block corresponds to the bitmap data following struc
SMALLBITGLYPH in Windows95 DDK.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-23

Type-0 CCE Packet

 be
e
F.11 HOSTDATA_BLT

Packet Type: 2D

Purpose: For copying a number of bit-packed bitmaps to the video memory. It can
used to print a string of large characters on the screen. In other words, th
function supports the LARGEBITGLYPH structure of Windows95 DDK.

Table F-11 Format

Ordinal Field Name

1 [HEADER]

2 {SETTINGS}

3 {DATA_BLOCK}

Table F-12 DATA_BLOCK

Ordinal Field Name Description

1 [FRGD_COLOUR]

Foreground color in RGBQUAD format. For mono-to-color expansion
only. The field is ineffective if field SRC_TYPE at
SETTINGS.GUI_CONTROL is set to a type other than mono opaque
or mono transparent (0 or 1).

2 [BKGD_COLOUR]

Background color in RGBQUAD format. For mono-to color expansion
only. The field is ineffective if field SRC_TYPE at
SETTINGS.GUI_CONTROL is set to a type other than mono opaque
or mono transparent (0 or 1).

3 {BIGCHAR_1} Data block of the 1st character.

…

m+2 {BIGCHAR_m} Data block of the m-th character.

Table F-13 DATA BLOCK for BIGCHAR_x

Ordinal Field Name Description

1 [BaseY | BaseX]
The coordinate of the top-left corner of the character’s bitmap.
BaseX: [15:0] - x-coordinate.
BaseY: [31:16] - y-coordinate.

2 [HEIGHT | WIDTH]
The geometry of the bitmap.
WIDTH: [15:0] - width of the bitmap.
HEIGHT: [31:16] - height of the bitmap.

3 [NUMBER] The number of DWORDs in the bitmap. It should be m in this case.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-24 Proprietary and Confidential

Type-0 CCE Packet
4 [RASTER_1] The 1st DWORD of the mono bitmap data.

…

m+3 [RASTER_m] The m-th DWORD of the mono bitmap data.

Table F-13 DATA BLOCK for BIGCHAR_x (Continued)

Ordinal Field Name Description
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-25

Type-0 CCE Packet
F.12 POLYLINE

Packet Type: 2D

Purpose: For drawing a polyline specified by a set of coordinates (x0, y0), (x1, y1), …,
(xn, yn), where coordinate (x0, y0) is the beginning of the polyline, and
coordinate (xn, yn) is the end.

Table F-14 Format for POLYLINE

Ordinal Field Name

1 [HEADER]

2 {SETTINGS}

3 {DATA_BLOCK}

Table F-15 DATA_BLOCK for POLYLINE

Ordinal Field Name Description

1 [Y0 | X0]
The starting coordinate of the polyline.
X0: [15:0] - x-component of the coordinate. Y0: [31:16] -
y-component.

2 [Y1 | X1] The 2nd coordinate of the polyline.

…

n+1 [Yn | Xn] The ending coordinate of the polyline.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-26 Proprietary and Confidential

Type-0 CCE Packet

the
F.13 SCALE

Packet Type: 2D

Purpose: For stretch or compressing the texture pattern stored in a bitmap, and put
scaled pattern to the destination area in the video memory.

Table F-16 Format

Ordinal Field Name

1 [HEADER]

2 {SETTINGS}

3 {DATA_BLOCK}

Table F-17 DATA_BLOCK for SCALE

Ordinal Field Name Description

1 [MISC_3D_STATE]
This field specifies the operation to be carried out. See
following for details.

2 [TEX_CNTL]
The bits of this field enable or disable the operations (alpha
and fog) specified in field MISC_3D_STATE. See below for
details.

3 [TEX_COMB_CTL]
This field corresponds to register
PRIMARY_TEXTURE_COMBINE_CNTL. See below for
details.

4 [SCALE_DATATYPE] See below.

5 [SCALE_OFFSET]

[25:0] - Offset of texture in video memory. (Alias to
TEX_0_OFFSET)
[31:30] - Texture mapping mode
0 - Texture surface is not tiled.
1 - Texture surface is tiled by the host application.
2, 3 - Texture surface is stored in a tiled surface.

6 [SCALE_PITCH] See below.

7 (Reserved) This field should be set to 0.

8 [SCALE_X_INC]

Scaling factor in x-direction. Its value is SRC_W/DST_W,
where SRC_W and DST_W denote the widths of the source
and destination images respectively.
[19:16] - Integer part of the factor.
[15:4] - Fractional part of the factor.
[Other bits] - reserved.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-27

Type-0 CCE Packet

-

e
9 [SCALE_Y_INC]

Scaling factor in y-direction. Its value is SRC_H/DST_H,
where SRC_H and DST_H denote the heights of the source
and destination images respectively.
[19:16] - Integer part of the factor.
[15:4] - Fractional part of the factor.
[Other bits] - reserved.

10 [DST_X | DST_Y]
The coordinate of the top-left corner of the destination bitmap.
DST_X: [29:16] - x-coordinate expressed in a signed integer.
DST_Y: [13:0] - y-coordinate expressed in a signed integer.

11 [DST_H | DST_W]
The width and height of the destination bitmap expressed in
unsigned integers.
DST_W: [13:0] - width. DST_H: [29:16] - height

Table F-18 DATA BLOCK for MISC_3D_STATE

Bit(s) Field Name Description

7:0 REF_ALPHA Reference Alpha value for alpha testing when the test is enabled.

9:8 SCALE_3D_FCN Set to 1 to enable the scaling operation.

11:10 (Reserved)

13:12 ALPHA_COMB_
FCN

This field defines how the resultant Alpha is computed in Alpha
blending.
Let Alpha, Src and Dst denote the resultant, the source and destina
tion alphas respectively, where Src=Ws*Sa and Dst=Wd*Sa. The
combining operation can be written as Alpha=Src OP Dst, where
operator OP is defined as:
0 - Add operation, and the resultant Alpha is limited to range [0, 1]
1 - Add operation
2 - Subtract operation and Alpha = Alpha MOD 1.0
3 - Subtract operation.
Note: Generally, Alpha is defined in range [0, 1]. However, it may
be represented in an integer ranging from 0 to 255. In this case, th
right-operand of MOD should be 256.

14 FOG_TABLE_
EN

0 - FOG_VERTEX
1 - FOG_TABLE

15 (Reserved)

Table F-17 DATA_BLOCK for SCALE (Continued)

Ordinal Field Name Description
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-28 Proprietary and Confidential

Type-0 CCE Packet

-
,
19:16 ALPHA_BLND_
SRC

This field select the weighting factors (Wa, Wr, Wg, Wb) for the
source pixel in the blending operation. Assume that source and des
tination pixels are denoted respectively as (Sa, Sr, Sg, Sb) and (Da
Dr, Dg, Db).
0 - BLEND_ZERO (Wa=Wr=Wg=Wb=0)
1 - BLEND_ONE (Wa=Wr=Wg=Wb=1)
2 - BLEND_SRCCOLOUR (not applicable)
3 - BLEND_INVSRCCOLOUR (not applicable)
4 - BLEND_SRCALPHA (Wa=Wr=Wg=Wb=Sa)
5 - BLEND_INVSRCALPHA (Wa=Wr=Wg=Wb=1-Sa)
6 - BLEND_DESTALPHA (Wa=Wr=Wg=Wb=Da)
7 - BLEND_INVDESTALPHA (Wa=Wr=Wg=Wb=1-Da)
8 - BLEND_DESTCOLOUR (Wa=Da, Wr=Dr, Wg=Dg, Wb=Db)
9 - BLEND_INVDESTCOLOUR (Wa=1-Da, Wr =1-Dr, Wg=1-Dg,

Wb=1-Db)
10 - BLEND_SRCALPHASAT (Wa=1, Wr=Wg=Wb=min(Sa,

1-Da))
11 - BLRND_BOTHSRCALPHA (Wa=Wr=Wg=Wb=Sa, and

assign factor 1-Sa to each weighting factor of the destination
pixel)

12 - BLEND_BOTHINVSRCALPHA (Wa=Wr=Wg=Wb=1-Sa,
and assign factor Sa to each weighting factor of the destination
pixel)

13-15 - Reserved

Table F-18 DATA BLOCK for MISC_3D_STATE (Continued)

Bit(s) Field Name Description
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-29

Type-0 CCE Packet
23:20 ALPHA_BLND_
DST

This field select the weighting factors (Wa, Wr, Wg, Wb) for the
destination pixel in the blending operation. Assume that source
and destination pixels are denoted respectively as (Sa, Sr, Sg,
Sb) and (Da, Dr, Dg, Db).

0 - BLEND_ZERO (Wa=Wr=Wg=Wb=0)
1 - BLEND_ONE (Wa=Wr=Wg=Wb=1)
2 - BLEND_SRCCOLOUR (Wa=Sa, Wr=Sr, Wg=Sg, Wb=Sb)
3 - BLEND_INVSRCCOLOUR (Wa=1-Sa, Wr=1-Sr, Wg=1-Sg,

Wb=1-Sb)
4 - BLEND_SRCALPHA (Wa=Wr=Wg=Wb=Sa)
5 - BLEND_INVSRCALPHA (Wa=Wr=Wg=Wb=1-Sa)
6 - BLEND_DESTALPHA (Wa=Wr=Wg=Wb=Da)
7 - BLEND_INVDESTALPHA (Wa=Wr=Wg=Wb=1-Da)
8 - BLEND_DESTCOLOUR (not applicable)
9 - BLEND_INVDESTCOLOUR (not applicable)
10 - BLEND_SRCALPHASAT (not applicable)
11-15 - Reserved

26:24 ALPHA_TST_OP Specifies the acceptance criterion in comparing the alpha compo-
nent of the new pixel against the reference alpha stored at field
REF_ALPHA. The test form is: if (NEWa OPCODE REFa) then
{Accept New Pixel}. The OPCODE is defined as:
0 - The test always fails, i.e. the new pixel is always rejected.
1 - CMP_LESS (Less than)
2 - CMP_EQUAL (Equal to)
3 - CMP_LESSEQUAL (Less than or equal to)
4 - CMP_GREATER (Greater than)
5 - CMP_NOTEQUAL (Not equal to)
6 - CMP_ALWAYS (The new pixel is always accepted.)

29:27 (Reserved)

Table F-18 DATA BLOCK for MISC_3D_STATE (Continued)

Bit(s) Field Name Description
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-30 Proprietary and Confidential

Type-0 CCE Packet

31:30 CLR_CMP_FCN

_3D
NOTE: This type of color keying is available. when using the old
texture interface (execute buffer, DrawPrimitve etc.). When the new
multi-texture API is used, then the APP must use the texel alpha.
This is what MS is advocating
ALIASED to CLR_CMP_CNTL_3D) bits 1:0
0 - False (always write the source to the destination)
1 - True (never write the source to the destination)
2 - Texel != CLR_CMP_CLR_3D (Write to the destination if texel

is equal to the color stored in register CLR_CMP_CLR_3D).
3 - Texel = CLR_CMP_CLR_3D (Write to the destination if texel is

NOT equal to the color stored in register CLR_CMP_CLR_3D).

Table F-19 DATA BLOCK for TEX_CNTL

Bit(s) Field Name Description

6:0 NIL1 Set to constant 0.

7 FOG_EN
0 - Disable fogging.
1 - Enable fogging.

8 DITHER_EN
0 - Disable dithering.
1 - Enable dithering.

9 ALPHA_EN
0 - Disable Alpha blending.
1 - Enable Alpha blending.

10 ALPHA_TST_EN
0 - Disable Alpha testing.
1 - Enable Alpha testing.

31:11 NIL2 Set to constant 0.

Table F-18 DATA BLOCK for MISC_3D_STATE (Continued)

Bit(s) Field Name Description
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-31

Type-0 CCE Packet
Table F-20 DATA_BLOCK for SCALE_DATATYPE

Bit(s) Field Name Description

3:0 SRC_DATATYPE

This field specifies the pixel type of the source bitmap.
0 - 2 bpp VQ (Not supported in the initial part)
1 - 4 bpp pseudocolor. Upper 4 bits of the byte are unused.
2 - 8 bpp pseudocolor
3 - 16 bpp aRGB 1555
4 - 16 bpp RGB 565
5 - (Reserved)
6 - 32 bpp aRGB 8888
7 - 8 bpp RGB 332
8 - Y8 greyscale
9 - RGB8 greyscale (8 bit intensity, duplicated for all 4 channels.
Green channel is used on writes)
10 - 16 bpp a:pseudocolor (8:8)
11 - YUV 422 packed (VYUY)
12 - YUV 422 packed (YVYU)
13 - 16 bpp a:RGB8 greyscale (8:8)
14 - aYUV 444 (8:8:8:8)
15 - aRGB4444

7:4 PALETTE

This field select a palette for pseudo color textures. The
interpretation of the code depends on field SRC_DATATYPE. If
SRC_DATATYPE = 1 (4 bpp color), this field selects 1 of 16
possible palettes stored in the system.
If SRC_DATATYPE = 2 (8 bpp pseudo color/VQ textures), this field
selects one of the following:
0 - either of 2 palettes
1 - Palette 1
2 - Palette 2
3-15 - (Reserved)

31:8 Reserved

Table F-21 DATA BLOCK for SCALE_PITCH

Bit(s) Field Name Description

8:0 SCALE_PITCH
Pitch in units of 8 pixels of the source data for RGB and packed
modes. The pitch is required to be programmed so that all source
lines are an integer number of QWORDs

16:9 Reserved
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-32 Proprietary and Confidential

Type-0 CCE Packet
20:17
SCALE_OFFSET_

PTR

This field points to one of registers TEX_x_OFFSET, where x can
be one of values 0, 1, …, 10. A TEX_x_OFFSET points to the
address of a texture stored in the video memory. This field should
be set to zero (0) for scaling.
0 - Use the texture pointed to by TEX_0_OFFSET as the source.
1 - Use the texture pointed to by TEX_1_OFFSET as the source.
…
10 - Use the texture pointed to by TEX_10_OFFSET as the

source.
11 - Use the texture pointed to by SEC_TEX_0_OFFSET as the

source.
12 - Use the texture pointed to by SEC_TEX_1_OFFSET as the

source.
…
15 - Use the texture pointed to by SEC_TEX_14_OFFSET as the

source.

29:21 Reserved

31:30 SCALE_PITCH_ADJ

Indicate whether SCALE_PITCH should be adjusted prior to use.
0 - no adjustment on SCALE_PITCH
1 - multiply SCALE_PITCH by 2 prior to use
2 - multiply SCALE_PITCH by 4 prior to use
3 - (Reserved)

Table F-21 DATA BLOCK for SCALE_PITCH (Continued)

Bit(s) Field Name Description
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-33

Type-0 CCE Packet
Table F-22 DATA_BLOCK.TEX_COMB_CTL

Bit(s) Field Name Description

3:0 COMB_FCN

Specifies the function used to modify the color component of primary
texels during the texture combine stage.

0 - Disable. Output color is: texture color (or Interpolator Color if
shading)

1 - Copy. Output color is COLOR_FACTOR
2 - Copy Input. Output color is INPUT_FACTOR
3 - Modulate. Output color is COLOR_FACTOR*INPUT_FACTOR
4 - Modulate*2. Output color is COLOR_FACTOR*INPUT_FACTOR*2
5 - Modulate*4. Output color is COLOR_FACTOR*INPUT_FACTOR*4
6 - Add. Output color is COLOR_FACTOR + INPUT FACTOR
7 - Add Signed. Output color is COLOR_FACTOR + INPUT FACTOR -

128
8 - Blend Vertex. Output color is (COLOR_FACTOR*interpolator alpha)

+ (INPUT_FACTOR*(1 - interpolator alpha)).
9 - Blend_Texture. Output color is (COLOR_FACTOR*primary texel

alpha) + (INPUT_FACTOR*(1 - primary texel alpha)).
10 - Blend Constant. Output color is

(COLOR_FACTOR*CONSTANT_ALPHA) + (INPUT_FACTOR*(1
-CONSTANT_ALPHA)).

11 - Blend Pre Multiply. Output color is COLOR FACTOR +
(INPUT_FACTOR*(1 - primary texel alpha)).

12 - Blend_Previous. Output color is (COLOR_FACTOR*primary texel
alpha) + (INPUT_FACTOR*(1 - primary texel alpha)).

13 - Blend Pre Multiply Inverse. Output color is COLOR FACTOR +
(INPUT_FACTOR*(primary texel alpha)).

14 - Add Signed2X. Output color is (COLOR_FACTOR +
INPUT_FACTOR - 128)*2

15 - Blend Constant Color. Output color is
(COLOR_FACTOR*CONSTANT_COLOR) + (INPUT_FACTOR*(1
-CONSTANT_COLOR)).

7:4 COLOR_FACTOR

0-3 - (Reserved)
4 - Texture Color (or Interpolator Color if shading)
5 - ~Texture Color (or ~Interpolator Color if shading)
6 - Texture Alpha (or Interpolator Alpha if shading)
7 - ~Texture Alpha (or ~Interpolator Alpha if shading)
8-15 - (Reserved)

9:8 Reserved

13:10 INPUT_FACTOR

0-1 - (Reserved)
2 - CONSTANT_COLOR
3 - CONSTANT_ALPHA
4 - Interpolator Color
5 - Interpolator Alpha
6-15 - (Reserved)
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-34 Proprietary and Confidential

Type-0 CCE Packet
17:14
COMB_FCN_ALP

HA

Specifies the function used to modify the alpha component of primary
texels during the texture combine stage.

0 - Disable. Output color is primary texture alpha (or Interpolator Alpha
if shading)

1 - Copy. Output color is ALPHA_FACTOR
2 - Copy Input. Output color is INPUT_FACTOR_ALPHA
3 - Modulate. Output color is

ALPHA_FACTOR*INPUT_FACTOR_ALPHA
4 - Modulate*2. Output color is

ALPHA_FACTOR*INPUT_FACTOR_ALPHA*2
5 - Modulate*4. Output color is

ALPHA_FACTOR*INPUT_FACTOR_ALPHA*4
6 - Add. Output color is ALPHA_FACTOR + INPUT_FACTOR_ALPHA

7 - Add Signed. Output color is ALPHA_FACTOR +
INPUT_FACTOR_ALPHA - 128

8-13 - (Reserved)
14 - Add Signed2x. Output color is (ALPHA_FACTOR +

INPUT_FACTOR_ALPHA - 128)*2
15 - (Reserved)

21:18 ALPHA_FACTOR

0-5 - (Reserved)
6 - Texture Alpha (or Interpolator Alpha if shading)
7 - ~Texture Alpha (or ~Interpolator Alpha if shading)
8-15 - (Reserved)

24:22 Reserved

27:25
INPUT_FACTOR_

ALPHA

0 - (Reserved)
1 - CONSTANT_ALPHA
2 - Interpolator Alpha
3 - (Reserved)
4 - (Reserved)
5-8 - (Reserved)

31:28 Reserved

Table F-22 DATA_BLOCK.TEX_COMB_CTL

Bit(s) Field Name Description
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-35

Type-0 CCE Packet

ttern

me
F.14 TRANS_SCALE

Packet Type: 2D

Purpose: For stretching or compressing the texture pattern (or bitmap), and put the
scaled pattern to the destination area in the video memory. The scaled pa
may be transparent to the background of the destination according to so
conditions set out by the user.

Table F-23 Format for TRANS_SCALE

Ordinal Field Name

1 [HEADER]

2 {SETTINGS}

3 {DATA_BLOCK}

Table F-24 DATA_BLOCK for TRANS_SCALE

Ordinal Field Name Description

1 [CLR_CMP_CNTL]
This field determines how the transparent scaled blitting is done. See
below for details.

2 [SRC_REF_CLR]
Source reference color in the RGBQUAD format. This is the color to
be stripped off from the source.

3 [DST_REF_CLR]
Destination reference color in the RGBQUAD format. This is the
color to be preserved at the destination.

4 [MISC_3D_STATE]
This field specifies the operation to be carried out. See section
B.2.2.6 SCALE for details.

5 [TEX_CNTL]
The bits of this field enable or disable the operations (alpha and fog)
specified in field MISC_3D_STATE. See section B.2.2.6 SCALE for
details.

6 [TEX_COMB_CTL]
This field corresponds to register
PRIMARY_TEXTURE_COMBINE_CNTL. See section B.2.2.6
SCALE for details.

7
[SCALE_DATATYPE

]
See section B.2.2.6 SCALE for details.

8 [SCALE_OFFSET]

[25:0] - Byte pointer to the smallest texture map.
[31:30] - Texture mapping mode
0 - Texture surface is not tiled.
1 - Texture surface is tiled by the host application.
2,3 - Texture surface is stored in a tiled surface.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-36 Proprietary and Confidential

Type-0 CCE Packet

 the
ay be

color
CLR_CMP_CNTL
This field controls how the source pixels are written to the destination, depending on
source and destination reference colors and comparison settings. The source pixels m
filtered against the source reference color, and the destination pixels with a specific
may be preserved according to field CLR_CMP_DST.

9 [SCALE_PITCH] See section B.2.2.6 SCALE for details.

10 (Reserved) This field should be set to zero (0).

11 [SCALE_X_INC]

Advancing step size (in units of pixels) in x-direction for the source
bitmap.
[19:4] - X accumulator increment, 12 bits fractional, 4 bits unsigned
integer. For packed or planar YUV pixels, this applies only to the Y
values.
[Other bits] - reserved.

12 [SCALE_Y_INC]

Advancing step size (in units of pixels) in y-direction for the source
bitmap.
[19:4] - Y accumulator increment, 12 bits fractional, 4 bits unsigned
integer.
[Other bits] - reserved.

13 [DST_X | DST_Y]
The coordinate of the top-left corner of the destination bitmap.
DST_X: [29:16] - x-coordinate expressed in a signed integer.
DST_Y: [13:0] - y-coordinate expressed in a signed integer.

14 [DST_H | DST_W]
The width and height of the destination bitmap, expressed in
unsigned integers.
DST_W: [13:0] - width. DST_H: [29:16] - height

Table F-24 DATA_BLOCK for TRANS_SCALE (Continued)

Ordinal Field Name Description
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-37

Type-0 CCE Packet
Table F-25 DATA_BLOCK for CLR_CMP_CNTL

Bit(s) Field Name Description

2:0
CLR_CMP_S

RC

Strip off the source reference color from the source pixels.
0 - Do not strip off source pixels. All source pixels are written to the
destination.
1 - Block the blitting source. No source pixel is written to the

destination.
2, 3 - Reserved.
4 - The source pixels whose color is equal to the reference color are

written to the destination.
5 - The source pixels whose color is NOT equal to the reference color

are written to the destination.
6 - Reserved.
7 - The source pixels whose color is equal to the reference color will be

XORed with the foreground color of a mono bitmap, and then
written to the destination. That is, destPixel = srcPixel XOR
foregrndColor if srcPixel is equal to the foreground color of a mono
bitmap, specifically text. This is referred to as flipping sometimes.

7:3 Reserved

10:8
CLR_CMP_D

ST

Preserve pixels at the destination.
0 - Do not preserve the destination pixels. All pixels from the source are

written to the destination.
1 - Preserve all the destination pixels. No source pixel is written to the

destination.
2, 3 - Reserved.
4 - The destination pixels whose color is equal to the reference color

are preserved. No source pixel is written on top of the pixels.
5 - The destination pixels whose color is NOT equal to the reference

color are preserved.
6, 7 - Reserved.

23:11 Reserved

25:24
CMP_ENABL

E

The bits controls what type of operation to be carried out.
0 - Enable function CLR_CMP_DST.
1 - Enable function CLR_CMP_SRC.
2 - Enable both CLR_CMP_SRC and CLR_CMP_DST. The final

decision is based on the agreement between decisions made
separately.

3 - Reserved.

31:26 Reserved
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-38 Proprietary and Confidential

Type-0 CCE Packet

 one.
 only
 has
F.15 POLYSCANLINES

Packet Type: 2D

Purpose: For drawing a number of scanlines and polyscanlines. The number can be
The difference between a scanline and a polyscanline is that a scanline has
one starting x-coordinate and one ending x-coordinate while a polyscanline
a number of starting-ending x-coordinate pairs.

Table F-26 Format POLYSCANLINES

Ordinal Field Name

1 [HEADER]

2 {SETTINGS}

3 {DATA_BLOCK}

Table F-27 DATA_BLOCK for POLYSCANLINES

Ordinal Field Name Description

1 [SCAN_COUNT]
The number of scan subpackets identified by SCAN_x, where x
denotes the ordinal number of a SCAN subpacket.

2 {SCAN_1} The 1st scanline/polyscanline.

…

n+1 {SCAN_n} The n-th scanline/polyscanline.

Table F-28 DATA_BLOCK.SCAN_x

Ordinal Field Name Description

1 [NUM_LINE] The number of line segments in a polyscanline.

2 [HEIGHT |
TOP]

TOP: [15:0] - y-coordinate of the polyscanline.
HEIGHT: [31:16] - The thickness of the line measured in pixels.

3 [END_1 |
START_1]

START_1: [15:0] - the starting x-coordinate of the 1st line segment.
END_1: [31:16] - the ending x-coordinate of the 1st line segment.

…

n+2 [END_n
|START_n]

START_n: [15:0] the starting x-coordinate of the n-th line segment.
END_n: [31:16] - the ending x-coordinate of the n-th line segment.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-39

Type-0 CCE Packet
F.16 NEXTCHAR

Packet Type: 2D

Purpose: For printing a character at a given screen location using the default
foreground and background colors.

Table F-29 Format for NEXTCHAR

Ordinal Field Name

1 [HEADER]

2 {DATA_BLOCK}

Table F-30 DATA BLOCK for NEXTCHAR

Ordinal Field Name Description

1 [DST_Y | DST_X]

The coordinates of the top-left corner of the destination bitmap.
DST_X: [15:0] - x-coordinate, ranging from -8192 to 8191. Bits
14 and 15 should be copies of bit 13.
DST_Y: [31:16] - y-coordinate, ranging from -8192 to 8191. Bits
30 and 31 should be copies of bit 29.

2 [DST_H | DST_W]
The width and height of the destination bitmap, expressed in
unsigned integers.
DST_W: [15:0] - width. DST_H [31:16] - height.

3 [BITMAP_DATA_1] The 1st DWORD of the bitmap data.

…

n+2 [BITMAP_DATA_n] The n-th DWORD of the bitmap data.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-40 Proprietary and Confidential

Type-0 CCE Packet

r

F.17 PAINT_MULTI

Packet Type: 2D

Purpose: For painting a number of rectangles on the screen with one color. The colo
used is specified in field SETTINGS while the location and geometry of the
rectangles are specified in field DATA_BLOCK.

Table F-31 Format for PAINT_MULTI

Ordinal Field Name

1 [HEADER]

2 {SETTINGS}

3 {DATA_BLOCK}

Table F-32 DATA_BLOCK for PAINT_MULTI

Ordinal Field Name Description

1 [DST_X1 | DST_Y1]

The coordinates of the top-left corner of the 1st rectangle.
DST_Y1: [15:0] - y-coordinate, ranging from -8192 to 8191. Bits
14 and 15 should be copies of bit 13.
DST_X1: [31:16] - x-coordinate, ranging from -8192 to 8191.
Bits 30 and 31 should be copies of bit 29.

2 [DST_W1 | DST_H1]

The width and height of the 1st rectangle, expressed in unsigned
integers.
DST_H1: [15:0] - height.
DST_W1: [31:16] - width.

…

2n-1 [DST_Xn | DST_Yn]

The coordinates of the top-left corner of the n-th rectangle.
DST_Yn: [15:0] - y-coordinate, ranging from -8192 to 8191. Bits
14 and 15 should be copies of bit 13.
DST_Xn: [31:16] - x-coordinate, ranging from -8192 to 8191.
Bits 30 and 31 should be copies of bit 29.

2n [DST_Wn | DST_Hn]

The width and height of the n-th rectangle, expressed in
unsigned integers.
DST_Hn: [15:0] - height.
DST_Wn: [31:16] - width.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-41

Type-0 CCE Packet

F.18 BITBLT_MULTI

Packet Type: 2D

Purpose: For copying a number of source rectangles to destination rectangles of the
screen respectively. It is assumed that the geometry of the destination is
identical to its source.

Table F-33 Format for BITBLT_MULTI

Ordinal Field Name

1 [HEADER]

2 {SETTINGS}

3 {DATA_BLOCK}

Table F-34 DATA_BLOCK for BITBLT_MULTI

Ordinal Field Name Description

1 [SRC_X1 | SRC_Y1]

The coordinates of the top-left corner of the 1st source bitmap.
SRC_Y1: [15:0] - y-coordinate, ranging from -8192 to 8191. Bits
14 and 15 should be copies of bit 13.
SRC_X1: [31:16] - x-coordinate, ranging from -8192 to 8191.
Bits 30 and 31 should be copies of bit 29.

2 [DST_X1 | DST_Y1]
The coordinates of the bottom-right corner of the 1st destination.
The definition of bits is the same as SRC_X1 and SRC_Y1.

3 [SRC_W1 | SRC_H1]

The width and height of the 1st source bitmap, expressed in
unsigned integers.
SRC_H1: [13:0] - height.
SRC_W1: [29:16] - width.

…

3n-1 [SRC_Xn | SRC_Yn]

The coordinates of the top-left corner of the n-th source bitmap.
SRC_Yn: [15:0] - y-coordinate, ranging from -8192 to 8191. Bits
14 and 15 should be copies of bit 13.
SRC_Xn: [31:16] - x-coordinate, ranging from -8192 to 8191.
Bits 30 and 31 should be copies of bit 29.

3n-2 [DST_Xn | DST_Yn]
The coordinates of the bottom-right corner of the n-th
destination.
The definition of bits is the same as SRC_Xn and SRC_Yn.

3n [SRC_Wn | SRC_Hn]

The width and height of the n-th source bitmap, expressed in
unsigned integers.
SRC_Hn: [13:0] - height.
SRC_Wn: [29:16] - width.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-42 Proprietary and Confidential

Type-0 CCE Packet

 the
ay be

color
F.19 TRANS_BITBLT

Packet Type: 2D

Purpose: For copying pixels from the source rectangle to the destination with
transparency.

F.19.1 CLR_CMP_CNTL

This field controls how the source pixels are written to the destination, depending on
source and destination reference colors and comparison settings. The source pixels m
filtered against the source reference color, and the destination pixels with a specific
may be preserved according to field CLR_CMP_DST.

Table F-35 Format for TRANS_BITBLT

Ordinal Field Name

1 [HEADER]

2 {SETTINGS}

3 {DATA_BLOCK}

Table F-36 DATA BLOCK for TRANS_BITBLT

Ordinal Field Name Description

1
[CLR_CMP_CNTL

]
This field decides how the transparent blitting is done. See following
for details.

2 [SRC_REF_CLR]
Source reference color in the RGBQUAD format. This is the color to
be stripped off from the source.

3 [DST_REF_CLR]
Destination reference color in the RGBQUAD format. This is the
color to be preserved at the destination.

4 [SRC_Y | SRC_X]
The coordinates of the top-left corner of the source bitmap.
SRC_X: [15:0] - x-coordinate represented by a signed integer.
SRC_Y: [31:16] - y-coordinate represented by a signed integer.

5 [DST_Y | DST_X]
The coordinates of the top-left corner of the destination bitmap.
DST_X: [15:0] - x-coordinate expressed in a signed integer.
DST_Y: [31:16] - y-coordinate expressed in a signed integer.

6 [DST_H | DST_W]
The width and height of the destination bitmap, expressed in
unsigned integers.
DST_W: [15:0] - width. DST_H: [31:16] - height.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-43

Type-0 CCE Packet
Table F-37 DATA BLOCK for CLR_CMP_CNTL

Bit(s) Bit-Field Name Description

2:0 CLR_CMP_SRC

Strip off the source reference color from the source pixels.
0 - Do not strip off source pixels. All source pixels are written to the

destination.
1 - Block the blitting source. No source pixel is written to the

destination.
2, 3 - reserved.

4 - The source pixels whose color is equal to the reference color
are written to the destination.

5 - The source pixels whose color is NOT equal to the reference
color are written to the destination.

6 - Reserved.
7 - The source pixels whose color is equal to the reference color

will be XORed with the foreground color of a mono bitmap, and
then written to the destination. That is, destPixel = srcPixel
XOR foregrndColor if srcPixel is equal to the foreground color
of a mono bitmap, specifically text. This is referred to as flipping
sometimes.

7:3 Reserved

10:8 CLR_CMP_DST

Preserve pixels at the destination.
0 - Do not preserve the destination pixels. All pixels from the

source are written to the destination.
1 - Preserve all the destination pixels. No source pixel is written to

the destination.
2, 3 - Reserved.
4 - The destination pixels whose color is equal to the reference

color are preserved. No source pixel is written on top of the
pixels.

5 - The destination pixels whose color is NOT equal to the
reference color are preserved.

6, 7 - Reserved.

23:11 Reserved

25:24 CMP_ENABLE

The bits controls what type of operation to be carried out.
0 - Enable function CLR_CMP_DST.
1 - Enable function CLR_CMP_SRC.
2 - Enable both CLR_CMP_SRC and CLR_CMP_DST. The final

decision is based on the agreement between decisions made
separately.

3 - Reserved.

31:26 Reserved
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-44 Proprietary and Confidential

Type-0 CCE Packet

gs.
F.20 PLY_NEXTSCAN

Packet Type: 2D

Purpose: For drawing a number of scanlines or polyscanlines using the current settin

Table F-38 Format for PLY_NEXTSCAN

Ordinal Field Name Description

1 [HEADER] The packet header

2 [HEIGHT | TOP]
TOP: [15:0] - y-coordinate of the scanline/polyscanline.
HEIGHT: [31:16] - The thickness of the line measured in pixels.

3 [END_1 | START_1]
START_1: [15:0] - the starting x-coordinate of the 1st dash.
END_1: [31:16] - the ending x-coordinate of the 1st dash.

…

n+2 [END_n | START_n]
START_n: [15:0] - the starting x-coordinate of the nth dash.
END_n: [31:16] - the ending x-coordinate of the nth dash.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-45

Type-0 CCE Packet

F.21 LOAD_PALETTE

Packet Type: 2D

Purpose: For setting up the 3D engine scaler and load a palette onto RAGE 128 for a
consequent 2D scaling operation.

Table F-39 Format LOAD_PALETTE

Ordinal Field Name Description

1 [HEADER] The packet header

2
[SCALE_DATATY

PE]
1 - The palette has 16 entries (4 bpp palette).
2 - The palette has 256 entries (8 bpp palette).

3 [COLOUR_1]

The 1st entry of the palette.
[7:0] - Blue component.
[15:8] - Green component.
[23:16] - Red component.
[31:24] - Alpha component if applicable.

4 [COLOUR_2] The 2nd entry of the palette. Bits are defined as above.

…

n+2 [COLOUR_n] The nth entry of the palette. n = 16 (4bpp) or 256 (8bpp)
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-46 Proprietary and Confidential

Type-0 CCE Packet
F.22 SET_SCISSORS

Packet Type: 2D

Purpose: For setting the scissors to the given parameters.

Table F-40 Format

Ordinal Field Name Description

1 [HEADER] The packet header

2 [TOP_LEFT]

[13:0] - x-coordinate of the left edge of the clipping rectangle (in
number of pixels).
[29:16] - y-coordinate of the top edge of the clipping rectangle (in
number of scanlines).

3 [BOTTOM_RIGHT]

[13:0] - x-coordinate of the right edge of the clipping rectangle (in
number of pixels).
[29:16] - y-coordinate of the bottom edge of the clipping rectangle
(in number of scanlines).
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-47

Type-0 CCE Packet
F.23 SET_MODE_24BPP

Packet Type: 2D

Purpose: For setting the 24bpp flag in the microcode engine.

Table F-41 Format for SET_MODE_24BPP

Ordinal Field Name Description

1 [HEADER] The packet header

2 [FLAG]
1 - Set the 24bpp flag in the microcode engine.
0 - Clear the 24bpp flag.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-48 Proprietary and Confidential

Type-0 CCE Packet

 to as
ld

e

N
a
F.24 3D_RNDR_GEN_PRIM

Packet Type: 3D

Purpose: For rendering 3D primitives points, lines and triangles through the ring
buffer.

The general form of 3D_RNDR_GEN_PRIM packets is as follows. It consists of

• A header field HEADER.

• A flag field VC_FORMAT that indicates how the vertex data blocks should be
interpreted.

• A control field VC_CNTL that defines the type of primitive being drawn and the
drawing method to be used.

• A number of vertex data blocks that specify the coordinates and geometry of the
primitive.

As the vertex data blocks are arranged contiguously in memory, they may be referred
vertex array or vertex list. The size of a vertex block may vary depending on the flag fie
VC_FORMAT. Therefore, such as vertex may be referred to as flexible vertex. However,
for a specific packet, all the vertex blocks are of the same size. So, the vertices of th
packet constitute a vertex array.

F.24.1 VC_FORMAT

This field is composed of a number of flags or subfields. Each flag determines the
presence of a corresponding data field in the data block FTLVERTEX_x. If a flag is O
or one, the corresponding data field is present in FTLVERTEX_x. Otherwise, the dat
field is not.

Table F-42 Format for 3D_RNDR_GEN_PRIM

Ordinal Field Name

1 [HEADER]

2 [VC_FORMAT]

3 [VC_CNTL]

4 {FTLVERTEX_1}

…

n+3 {FTLVERTEX_n}
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-49

Type-0 CCE Packet
F.24.2 VC_CNTL

This field corresponds to RAGE 128 register PM4_VC_CNTL. It selects the type of
rendering primitive and the method of using the hardware.

Table F-43 VC_FORMAT

Bit(s) Field Name Description

0 RHW
1 - The FTLVERTEX block (defined below) contains a RHW field.
0 - The FTLVERTEX block does not contain such a field.

1 DIFFUSE_BGR
1 - The FTLVERTEX block contains a diffuse component of 3 colors

(B,G,R) expressed in the float type.
0 - The FTLVERTEX block does not contain such a component (B,G,R).

2 DIFFUSE_A
1 - The FTLVERTEX block contains field DIFFUSE_ALPHA expressed

in the float type.
0 - The FTLVERTEX block does not contain such a field.

3 DIFFUSE_ARGB
1 - The FTLVERTEX block contains field DIFFUSE_ARGB.
0 - The FTLVERTEX block does not contain such a field.

4 SPEC_BGR

1 - The FTLVERTEX block contains a specular component of 3 colors
represented in the OpenGL format, i.e., each of colors B,G,R is
represented by a number between 0.0 and 1.0.

0 - The FTLVERTEX block does not contain such a component.

5 SPEC_F
1 - The FTLVERTEX block contains field SPEC_FOG represented by a

number between 0.0 and 1.0.
0 - The FTLVERTEX block does not contain such a field.

6 SPEC_FRGB

1 - The FTLVERTEX structure contains a combined fog/specular color
component in the form of DWORD FRGB.

0 - The FTLVERTEX structure does not contain a combined
fog/specular color component

7 S_T

1 - The FTLVERTEX block contains a set of texture coordinates (S, T).
They are stored in two FLOATs.

0 - The FTLVERTEX block does not contain any texture coordinates (S,
T).

8 S2_T2

1 - The FTLVERTEX block contains the second set of texture
coordinates (S,T). They are stored in two FLOATs. Note that they
are mainly used by D3D’s multi-texture API.

0 - The FTLVERTEX block does not contain the second set of texture
coordinates (S,T).

9 RHW2
1 - The FTLVERTEX block contains field floatRHW2 for the second set

of texture coordinates.
0 - The FTLVERTEX block does not contain such a field.

31:10 Reserved
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-50 Proprietary and Confidential

Type-0 CCE Packet

3-D
F.24.3 FTLVERTEX

A vertex data block is denoted by FTLVERTEX_x where x is the ordinal number of the
block. FTLVERTEX supplies the coordinates and associated attributes of a point in a
space. The presence of some fields in a FTLVERTEX_x block depends on the fields of
PM4_VC_FORMAT. Therefore, the size of a FTLVERTEX block may vary. The definition
of FTLVERTEX is given as follows and the ordering of the fields in a FTLVERTEX block
follows their ordering in the following table.

Table F-44 VC_CNTL

Bit(s) Field Name Description

3:0
VC_PRIM_TYP

E

The field defines the types of rendering primitive.
0 - Draw nothing.
1 - Draw a number of points.
2 - Draw a number of independent lines.
3 - Draw a number of polylines (line strips).
4 - Draw a number of independent triangles.
5 - Draw a triangle fan.
6 - Draw a triangle strip.
7 - Draw type-2 triangles. (for the vertex walker only)
8 -15 - Reserved

5:4 PRIM_WALK

This field defines the method of rendering. The object being drawn
relates to the setting of VC_PRIM_TYPE.

0 - Reserved
1 - Draw the primitives pointed to by the given vertex indices using the

vertex walker method.
2 - Draw all the primitives given in the vertex list using the vertex walker

method.
3 - Use the ring buffer method to draw all the primitives. The following

data consists of a number of FTLVERTEX structures.

15:6 Reserved

31:16 NUM_VERTEX The number of vertices in the packet. It should be n in this case.

Table F-45 FTLVERTEX

Field Name Data Type Description

[X_COORDINATE] FLOAT
The x-coordinate of the vertex. Always present in
FTLVERTEX.

[Y_COORDINATE] FLOAT
The y-coordinate of the vertex. Always present in
FTLVERTEX.

[Z_COORDINATE] FLOAT
The z-coordinate of the vertex. Always present in
FTLVERTEX.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-51

Type-0 CCE Packet
[RHW] FLOAT
This value is equal to 1/ Z_COORDINATE. Conditional
presence if VC_FORMAT.RHW =1

[DIFFUSE_BLUE] FLOAT

The Blue component of diffuse color. Color intensity
represented in the OpenGL format. Its value is between 0.0
and 1.0, where 1.0 represents the highest intensity while 0.0
represents the lowest. Conditional presence if
VC_FORMAT.DIFFUSE_BGR=1.

[DIFFUSE_GREEN] FLOAT
The Green component of diffuse color. Expressed in the
OpenGL format. Conditional presence if
VC_FORMAT.DIFFUSE_BGR=1.

[DIFFUSE_RED] FLOAT
The Red component of diffuse color. Expressed in the
OpenGL format. Conditional presence if
VC_FORMAT.DIFFUSE_BGR =1.

[DIFFUSE_ALPHA] FLOAT
Diffuse component. Its value is between 0.0 and 1.0.
Conditional presence if VC_FORMAT.DIFFUSE_A=1.

[DIFFUSE_ARGB] DWORD

Diffuse component expressed in integer.
[31:24] - The Alpha component in unsigned integer.
[23:16] - The Red component in unsigned integer.
[15:8] - The Green component in unsigned integer.
[7:0] - The Blue component in unsigned integer.
Conditional presence if VC_FORMAT.DIFFUSE_ARGB = 1.

[SPEC_BLUE] FLOAT
The blue component of specular color in the OpenGL
format. Conditional presence if VC_FORMAT.SPEC_BGR=1.

[SPEC_GREEN] FLOAT
The green component of specular color in the OpenGL
format. Conditional presence if VC_FORMAT.SPEC_BGR=1.

[SPEC_RED] FLOAT
The red component of specular color in the OpenGL format.
Conditional presence if VC_FORMAT.SPEC_BGR=1.

[SPEC_FOG] FLOAT
The fog component of specular color. Its value is between 0
and 1. Conditional presence if VC_FORMAT.SPEC_F=1.

[SPEC_FRGB] DWORD

The integer format of specular color.
[31:24] - The Fog component in unsigned integer.
[23:16] - The Red component in unsigned integer.
[15:8] - The Green component in unsigned integer.
[7:0] - The Blue component in unsigned integer.
Conditional presence if VC_FORMAT.SPEC_FRGB = 1.

[TEXTURE1_U] FLOAT
The u-coordinate of the 1st texture. Conditional presence if
VC_FORMAT.S_T =1

[TEXTURE1_V] FLOAT
The v-coordinate of the 1st texture. Conditional presence if
VC_FORMAT.S_T =1

[TEXTURE2_U] FLOAT
The u-coordinate of the 2nd texture. Conditional presence if
VC_FORMAT.S2_T2=1

Table F-45 FTLVERTEX (Continued)

Field Name Data Type Description
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-52 Proprietary and Confidential

Type-0 CCE Packet
[TEXTURE2_V] FLOAT
The v-coordinate of the 2nd texture. Conditional presence if
VC_FORMAT.S2_T2=1

[RHW2] FLOAT
Not used for DirectX. Conditional presence if
VC_FORMAT.RHW2=1

Table F-45 FTLVERTEX (Continued)

Field Name Data Type Description
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-53

Type-0 CCE Packet

enting

ach
F.25 Interpretation of Vertices

The vertices in the packet are represented by an array of fields FTLVERTEX _1 through
FTLVERTEX_n. The interpretation of the vertex array depends on the field
VC_PRIM_TYPE. The following list the interpretations with respect to a given
VC_PRIM_TYPE code (in parentheses).

F.25.1 Points (1)

A point is specified by one vertex.

F.25.2 Lines (2)

A line is specified by 2 vertices, one representing the start point and the other repres
the end point. To specify m lines, we need 2m vertices.

F.25.3 Polylines (3)

A polyline is composed of a number of line segments with their ends connected to e
other. Therefore, we need m+1 vertices to specify an m-segment polyline.

Table F-46 Points (1)

Ordinal Field Name Description

1 FTLVERTEX_1 The 1st point to be drawn.

2 FTLVERTEX_2 The 2nd point to be drawn.

…

n FTLVERTEX_n The n-th point to be drawn.

Table F-47 Lines (2)

Ordinal Field Name Description

1 FTLVERTEX_1 The start of the 1st line.

2 FTLVERTEX_2 The end of the 1st line.

3 FTLVERTEX_3 The start of the 2nd line.

4 FTLVERTEX_4 The end of the 2nd line.

…

n-1 FTLVERTEX_2m-1 The start of the m-th line.

n FTLVERTEX_2m The end of the m-th line.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-54 Proprietary and Confidential

Type-0 CCE Packet

mber

 used
 and
er of
F.25.4 Triangles (4)

Three vertices are required to specify an independent triangle. Therefore, the total nu
of vertices required for specifying m independent triangles is 3m.

F.25.5 Triangle Fan (5)

In drawing a triangle fan, vertex 1 is shared by all the triangles, and two neighboring
triangles share two vertices (vertex 1 is one of them). That is, vertices 1, 2 and 3 are
to draw the first triangle; vertices 1, 3 and 4 to draw the second triangle; vertices 1, 4
5 to draw the third; and so on. If the triangle fan is composed of m triangle, the numb
vertices required for specifying the fan is n=m+2.

Table F-48 Polylines (3)

Ordinal Field Name Description

1 FTLVERTEX_1 The start of the 1st line segment.

2 FTLVERTEX_2
The end of the 1st line segment, and the start of
the 2nd line segment.

3 FTLVERTEX_3
The end of the 2nd line segment, and the start of
the 3rd line segment.

…

n-1 FTLVERTEX_m
The end of the (m-1)-th line segment, and the
start of the m-th line segment

n FTLVERTEX_m+1 The end of the m-th line segment.

Table F-49 Triangles (4)

Ordinal Field Name Description

1 FTLVERTEX_1 The 1st vertex of the 1st triangle.

2 FTLVERTEX_2 The 2nd vertex of the 1st triangle.

3 FTLVERTEX_3 The 3rd vertex of the 1st triangle.

4 FTLVERTEX_4 The 1st vertex of the 2nd triangle.

5 FTLVERTEX_5 The 2nd vertex of the 2nd triangle.

6 FTLVERTEX_6 The 3rd vertex of the 2nd triangle.

…

n-2 FTLVERTEX_3m-2 The 1st vertex of the m-th triangle.

n-1 FTLVERTEX_3m-1 The 2nd vertex of the m-th triangle.

n FTLVERTEX_3m The 3rd vertex of the m-th triangle.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-55

Type-0 CCE Packet

o
nt

, 2
iangle
ip is
F.25.6 Triangle Strip (6)

A triangle strip is composed of a number of triangles where an adjacent pair share tw
vertices. With a triangle strip, only the first triangle uses three vertices, the subseque
triangles only need one new vertex for the rendering (two vertices from the previous
triangle are re-used). That is, the drawing of the first triangle makes use of vertices 1
and 3. The drawing of the second makes use of vertices 2, 3 and 4; and so on. If a tr
strip is composed of m triangle, the number of vertices required for specifying the str
n=m+2.

Table F-50 Triangle Fan (5)

Ordinal Field Name Description

1 FTLVERTEX_1
This vertex is shared by all the triangles, and
is referred to as the 1st vertex by all the
triangles.

2 FTLVERTEX_2 The 2nd vertex of the 1st triangle.

3 FTLVERTEX_3
The 3rd vertex of the 1st triangle and the 2nd
vertex of the 2nd triangle.

4 FTLVERTEX_4
The 3rd vertex of the 2nd triangle and the 2nd
vertex of the 3rd triangle.

…

n-1 FTLVERTEX_n-1
The 3rd vertex of the (m-1)-th triangle and the
2nd vertex of the m-th triangle.

n FTLVERTEX_n The 3rd vertex of the m-th triangle.

Table F-51 Triangle Strip (6)

Ordinal Field Name Description

1 FTLVERTEX_1 The 1st vertex of the 1st triangle.

2 FTLVERTEX_2
The 2nd vertex of the 1st triangle and the 1st
vertex of the 2nd triangle

3 FTLVERTEX_3
The 3rd vertex of the 1st triangle and the 2nd
vertex of the 2nd triangle.

4 FTLVERTEX_4
The 3rd vertex of the 2nd triangle and the 2nd
vertex of the 3rd triangle.

…

n-1 FTLVERTEX_n-1
The 3rd vertex of the (m-1)-th triangle and the 2nd
vertex of the m-th triangle.

n FTLVERTEX_n The 3rd vertex of the m-th triangle.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-56 Proprietary and Confidential

Type-0 CCE Packet

e
f
 the

 out
the
s
F.26 3D_RNDR_GEN_INDX_PRIM

Packet Type: 3D

Purpose: Render 3-D primitives points, lines and triangles using the Vertex Walker
method. The data buffer pointed to by field PM4_VC_VLOFF is filled by th
application. The vertex walker draws primitives according to the settings o
field VC_CNTL of the packet. The indices in the packet serve as pointers to
vertex data blocks in the associated vertex array which are selected for
rendering. The selected vertex data are used by the vertex walker to carry
the rendering operation. If the packet does not have the index portion, i.e.
packet only consists of 5 fields (HEADER and 4 fields that follow it), it implie
that the entire vertex array is used for rendering.

Table F-52 Format for 3D_RNDR_GEN_INDX_PRIM

Ordinal Field Name Description

1 [HEADER] Header of the packet

2 [PM4_VC_VLOFF]
The offset of the vertex array with respect to the physical address
of the AGP space, as special service is required to convert the
array address from the virtual space to this offset.

3 [PM4_VC_VSIZE] The total number of vertices in the vertex array

4 [VC_FORMAT] Same as field VC_FORMAT of packet 3D_RNDR_GEN_PRIM.

5 [VC_CNTL]

Same as field VC_CNTL of packet 3D_RNDR_GEN_PRIM.
Its subfields should be set to the values relevant to the vertex
walker operation. Also, registers PM4_VC_VLOFF,
PM4_VC_VSIZE and PM4_VC_VFORMAT should be set up
accordingly.

6 [INDX_2 | INDX_1]

INDX_1: [15:0] - the index of the 1st selected element in the vertex
list.
INDX_2: [31:16] - the index of the 2nd selected element in the
vertex list.

7 [INDX_4 | INDX_3] The 3rd and 4th selected elements in the vertex list.

…

n+5
[INDX_2n |
INDX_2n-1]

The last two selected elements in the vertex list.
Note: the chosen elements can be any vertices, and their indices
don’t have be contiguous. For example, one may select 5 vertices
from 10 for rendering primitives. The indices of the selected
vertices can be 0, 4, 5, 8 and 9. If the number of selected vertices
is not even, the high word of the last DWORD of the packet may be
filled with 0.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-57

Type-0 CCE Packet
F.26.1 Vertex Array Format

Table F-53 Vertex Array Format

Ordinal Field Name Description

1 {FTLVERTEX_1} The 1st vertex data block

2 {FTLVERTEX_2} The 2nd vertex data block

…

2n {FTLVERTEX_2n} The n-th vertex data block
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-58 Proprietary and Confidential

Type-0 CCE Packet

e
F.27 NEXT_VERTEX_BUNDLE

Packet Type: 3D

Purpose: This is a continuation of packet 3D_RNDR_GEN_INDX_PRIM. Using this
packet implies that the primitives in this packet will be rendered in the sam
manner as those of the previous 3D_RNDR_GEN_INDX_PRIM packet.

Table F-54 Format for NEXT_VERTEX_BUNDLE

Ordinal Field Name Description

1 [HEADER] Header of the packet

6 [INDX_2 | INDX_1]

INDX_1: [15:0] - the index of the 1st selected element in the vertex
list.
INDX_2: [31:16] - the index of the 2nd selected element in the
vertex list.

7 [INDX_4 | INDX_3] The 3rd and 4th selected elements in the vertex list.

…

n+5
[INDX_2n |
INDX_2n-1]

The last two selected elements in the vertex list.
Note: the chosen elements can be any vertices, and their indices
don’t have be contiguous. For example, one may select 5 vertices
from 10 for rendering primitives. The indices of the selected
vertices can be 0, 4, 5, 8 and 9. If the number of selected vertices
is not even, the high word of the last DWORD of the packet may be
filled with 0.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential F-59

Type-0 CCE Packet
This page intentionally left blank.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
F-60 Proprietary and Confidential

Index
Numerics
1555 Format, 2-13

15-bpp, aRGB, or 1555
Format, 2-13

16-bpp, RGB, or 565
format, 2-13

1-bpp Format, 2-12

24-bpp Format, 2-14

2D Render Engine, 2-3

2x2 tap-filter kernel, 7-4

32-bpp, RGBa, or 8888
Format, 2-14

3D Context, setting up, 6-30

3D Render Engine, 2-3

3D Render States, setting
of, 6-48

3D Setup Engine, 2-3

4-tap filter coefficients, 7-5

4-tap vertical filtering, 7-5

4x3 tap-filter kernel, 7-4

565 format, 2-13

8888 Format, 2-14

8-bpp Format, 2-12

A
AC Palette Data, D-20

AC Palette Format, D-19

Accelerated Graphics Port (AGP)
Interface, 2-3

Active Display Page, A-2

Active Display(s), B-14

Active Page, A-4

Active Page Down, A-3

Active Page Up, A-3

Addressing video memory, 2-17

Advanced Deinterlacing, 7-25

AH = 0, A-1

AH = 0Ah, A-4

AH = 0Bh, A-4

AH = 0Ch, A-4

AH = 0Dh, A-4

AH = 0Eh, A-4

AH = 0Fh, A-5

AH = 1, A-2

AH = 10h, A-5

AH = 12h, A-9

AH = 13h, A-11

AH = 2, A-2

AH = 3, A-2

AH = 4, A-2

AH = 5, A-2

AH = 6, A-3

AH = 7, A-3

AH = 8, A-3

AH = 9, A-3

AH=11h, A-7

AH=1Ah, A-11

AH=1Bh, A-12

AH=1Ch, A-15
© 1998 ATI Technologies Inc. RAGE 128 Series Design Guide
Proprietary and Confidential Preliminary ix-1

Index
AL = 00h, B-4

AL = 02h, B-5

aliasing, 7-4, 7-7

Alpha Blending, 6-49

Alpha Testing, 6-50

ALPHA_BLND_DST, 6-49

ALPHA_BLND_SRC, 6-49

alpha-blending compositor, 7-4

aRGB format, 2-13

Autoflipping, 7-25

Autonomous Update, 7-24

B
Back End Overlay, 7-2

Back End Video Scalar, 7-3

Back-end Video Scalar, 7-3

BACKFACE_CULLING_FN, 6-5
4

background color, 2-11

band limited, 7-21

Band-end Overlay Scalar, 7-2

Bandwidth, 7-15
getting more, 7-35
managing, 7-15

BIOS Extensions, B-2

BIOS Header, C-1

BIOS Multimedia Table, E-2

BIOS_ADDR
64h, B-2, B-3
68h, B-2

Bit Block Transfer, 4-6

bit per pixel, 2-11

BitBlt, 4-6

BitBlt - Bit Block Transfer, 4-6

Blending
alpha, 6-49

Blits Scalar, 7-3

bob, 7-6

Brightness Control, 7-6

Buffer
CCE FIFO, 2-3
command FIFO, 2-3
frame, 2-3

buffer flipping, 7-10

Bus Master Operation, 7-37

Bus Mastering, 7-37

C
CalcFetchStartPoint, 7-16

CalcScalarHBlank
function, 7-31

CalcScalarHBlank routine, 7-31

CALL BIOS_ADDR
64h, B-2
68h, B-2

Calling Extended functions, B-2

capture ports, 7-6

Capture Width Info, B-7

Cathode Ray Tube, 2-10

Cautions When Programming
RAGE 128 in CCE Mod, 5-8

CCE Command Packets, F-1

CCE Engine
usage, 5-1

CCE Engine Initialization and
Usage, 5-1

CCE FIFO Buffer, 2-3
RAGE 128 Series Design Guide © 1998 ATI Technologies Inc.
ix-2 Preliminary Proprietary and Confidential

Index
CCE Microengine, 2-3
starting, 5-3

CCE Packets, 6-1

CCE Registers
loading, 5-4

Character Generator
Routines, A-7

character generator
routines, A-7

Character/Attribute at Current
Active Cursor Position, A-3

Character/Attribute at Current
Cursor Position of a specified
page, A-3

color adjustments, 7-5

color components, 2-11

Color Controls, 7-28

color expansion, 2-11

color intensity, 2-10

Color Palette, A-4

color-temperature, 7-5

Combination Code, A-11

Command FIFO Buffer, 2-3

Compatibility, B-3

CRT parameter table, B-16,
B-17

CRT/TV/DFP, B-13

Culling, 6-54

CUR_HORZ_VERT_OFF, 4-19

CUR_HORZ_VERT_POSN, 4-1
9, 4-21

CUR_OFFSET, 4-19

Curr register, 7-25

Current Active Cursor
Position, A-3

Current Cursor Position, A-2

Current Cursor Position at the
specified page, A-2

Current Cursor Position of a
specified page, A-3, A-4

Current EGA Settings/Print
Screen Routine Selection, A-9

Current Light Pen Position, A-2

Current Video Setting, A-5

Cursor
hardware, 4-19
pixel, 4-20

Cursor Pitch, 4-21

Cursor Position, 4-21

Cursor Type, A-2

D
DAC State, B-5

Data Channel (DDC)
Service, B-10

Deinterlace Pattern
Directives, 7-26

Deinterlace Pattern
Pointer, 7-26

deinterlacing, 7-5

deinterlacing techniques, 7-25

Descriptor Table
creating, 7-37

Destination Window
setting up, 7-20

destination window
coordinates, 7-20

Detect CRT/TV/DFP, B-13

DFP Information, C-9
© 1998 ATI Technologies Inc. RAGE 128 Series Design Guide
Proprietary and Confidential Preliminary ix-3

Index
Digital to Analog Converter, 7-2

Digital-TV, 7-4

digitized color, 2-10

Directive Value, 7-26

Display Combination
Code, A-11

display combination code, A-11

Display Controller State, B-4

Display Data Channel (DDC)
Service, B-10

Display Identification
Extensions, D-23

Display Mode, B-4

Display Power Management
Service (DPMS), B-10

Display Start, D-18

Display Window Control, D-15

Dithering, 6-53

DL_RPTR, 5-10, 5-11

DL_WPTR, 5-10, 5-11

Dot (graphics mode), A-4

downscale, 7-3

DP_BRUSH_DATATYPE@DP_D
ATATYPE., 4-15

Drawing, 4-4
using programmed I/O, 4-4

Drawing Lines, 4-13

Drawing Rectangles, 4-4

dropping lines, 7-23

dummy area, 2-16

E
EarliestDataTransfer, 7-31

EGA Settings/Print Screen
Routine Selection, A-9

Engine Command Queue
Maintenance, 4-2

Engine Idle, 5-3

Extended BIOS Function
Calls, B-1

Extended ROM Services, B-3

F
Filter Coefficients

calculating, 7-21

filter coefficients, 7-21

flicker, 7-9

Fog Blending, 6-51

foreground color, 2-11

Formats for Various Color
Images, 2-11

Frame Buffer, 2-3

frame buffer, 2-16

Front-end Scalar, 7-36

FRONTFACE_CULLING_FN, 6
-54

Function 00h - Return Super VGA
Information, D-3

Function 01h - Return Super VGA
Mode Information, D-6

Function 01h - Set Display
Controller State, B-4

Function 02h - Set DAC
State, B-5

Function 02h - Set Super VGA
Video Mode, D-12

Function 03h - Program Specified
RAGE 128 Series Design Guide © 1998 ATI Technologies Inc.
ix-4 Preliminary Proprietary and Confidential

Index
Clock Entry, B-5

Function 03h - Return Current
Video Mode, D-13

Function 04h - Save/Restore
State, D-14

Function 04h - Short Query
Function 0, B-6

Function 05h - Display Window
Control, D-15

Function 05h - Short Query
Function 1, B-6

Function 06h - Set/Get Logical
Scan Line Length, D-17

Function 06h - Short Query
Function 2, B-6

Function 07h - Query Graphics
Hardware Capability and Capture
Width Info, B-7

Function 07h - Set/Get Display
Start, D-18

Function 08h - Query Installed
Modes, B-9

Function 08h - Set/Get AC
Palette Format, D-19

Function 09h - Query Supported
Mode, B-9

Function 09h - Set/Get AC
Palette Data, D-20

Function 0Ah - Display Power
Management Service
(DPMS), B-10

Function 0Bh - Display Data
Channel (DDC) Service, B-10

Function 0Ch - Save and Restore
Graphics Controller Data, B-12

Function 0Dh - Get/Set Refresh
Rate (CRT only), B-12

Function 14h - Detect
CRT/TV/DFP, B-13

Function 15h - Get/Set Active
Display(s), B-14

Function 16h - Get/Set TV
Standard, B-15

Function 17h - Get TVOut
Info, B-15

G
Gamma Correction, 7-6

Generator Routines, A-7

Get AC Palette Format, D-19

Get Display Power State, D-21

Get TVOut Info, B-15

Get/Set Active Display(s), B-14

Get/Set Refresh Rate (CRT
only), B-12

Get/Set TV Standard, B-15

Gouraud shading, 6-53

Graphics Controller Data, B-12

graphics frame buffer, 7-3

Graphics Hardware
Capability, B-7

GUI_FIFOCNT@GUI_STAT, 4-
2

GUI_STAT, 4-2

H
Hactive scalar, 7-32

Hardware Cursor, 4-19

HBlank
© 1998 ATI Technologies Inc. RAGE 128 Series Design Guide
Proprietary and Confidential Preliminary ix-5

Index
tabulating cycles, 7-30

Hop, 7-10

Horizontal Accumulator
setting up, 7-17

horizontal capture
downscalar, 7-9

Horizontal Down Scalars, 7-2

Horizontal UV Scaling, 7-22

Horizontal Y Scaling, 7-22

I
Information Tables, C-1, C-8

Installed Modes, B-9

J
Jump, 7-10

K
Keying Controls, 7-29

L
LatestDataTransfer, 7-31

lead time, 7-16

LineFetchSetup, 7-16

Lines
drawing, 4-13

Logical Scan Line Length, D-17

M
Managing

ring buffer, 5-9

Managing Bandwidth, 7-15

Marriage Walk, 7-11

Memory
pixel location, 4-20

Microcode
loading into microengine, 5-3

MinDroppedP23Lines, 7-32

Mipmapping, 6-47

Mode Table Structure, B-16

Monochrome Expansion, 4-16

Monochrome Images, 2-11

motion aliasing, 7-9

N
natural color, 2-10

Next register, 7-25

Nomenclature and
Conventions, 1-5

O
off-screen area, 2-16

on-screen area, 2-16

OV0_AUTO_FLIP_CNTL, 7-25

OV0_DEINT_PAT, 7-26

OV0_DEINTERLACE_PATTERN
, 7-25

OV0_EXCLUSIVE_HORZ, 7-20
RAGE 128 Series Design Guide © 1998 ATI Technologies Inc.
ix-6 Preliminary Proprietary and Confidential

Index
OV0_EXCLUSIVE_VERT, 7-20

OV0_FILTER_CNTL, 7-21

OV0_FOUR_TAP_COEF_, 7-2
1

OV0_GRAPHICS_KEY_CLR, 7
-29

OV0_GRAPHICS_KEY_MSK,
7-29

OV0_H_INC, 7-17

OV0_KEY_CNTL, 7-29

OV0_P*_X_START_END, 7-20

OV0_P1_BLANK_LINES_AT_T
OP, 7-20

OV0_P1_H_ACCUM_INIT, 7-1
7

OV0_P1_H_INC, 7-18

OV0_P1_H_STEP_BY, 7-18

OV0_P1_V_ACCUM_INIT, 7-2
3

OV0_P23_BLANK_LINES_AT_T
OP, 7-20

OV0_P23_H_ACCUM_INIT, 7-
17

OV0_P23_H_INC, 7-18

OV0_P23_H_STEP_BY, 7-18

OV0_P23_V_ACCUM_INIT, 7-
23

OV0_REG_LOAD_CNTL, 7-15

OV0_REG_LOAD_CNTL.*LOCK
*, 7-24

OV0_SCALE_CNTL, 7-15

OV0_SCALE_CNTL.OV0_DOUB
LE_BUFFER_REGS, 7-24

OV0_STEP_BY, 7-17

OV0_V_INC, 7-23

OV0_VID_BUF*_BASE_ADRS,
7-20

OV0_VID_BUF_PITCH0_VALUE
, 7-23

OV0_VID_BUF_PITCH1_VALUE
, 7-23

OV0_VIDEO_KEY_CLR, 7-29

OV0_VIDEO_KEY_MSK, 7-29

OV0_Y_X_END, 7-20

OV0_Y_X_START, 7-20

overlay surface, 7-2

P
packed modes, 7-10

Packed YUYV, UYVY, 7-5

Palette Registers, A-5

Patterned Lines
drawing, 4-15

PCI Host Bus Interface, 2-3

Pitch, 2-15
cursor, 4-21

Pixel
cursor, 4-20

Pixel Location in Memory, 4-20

pixel-dropping technique, 7-7

Pixels, 2-14

pixels, 2-10

planer modes, 7-10

Planer YUV9, YUV12, 7-5

PM4_MICROCODE_ADDR, 5-
3

PM4_MICROCODE_DATAH, 5-
3

© 1998 ATI Technologies Inc. RAGE 128 Series Design Guide
Proprietary and Confidential Preliminary ix-7

Index
PM4_MICROCODE_DATAL, 5-
3

Position
cursor, 4-21

Power Management Service
(DPMS), B-10

Power Management
Services, D-21

Prev register, 7-25

primary-surface buffer, 7-2

Program Specified Clock
Entry, B-5

Programmed I/O Drawing
Operations, 4-4

Programming, 4-1
scalar, 7-15

Programming RAGE 128 in CCE
Mode, 5-8

Pseudo Code to set up a
Descriptor, 7-38

Q
Query Function 0, B-6

Query Function 1, B-6

Query Function 2, B-6

Query Graphics Hardware
Capability and Capture Width
Info, B-7

Query Installed Modes, B-9

Query Supported Mode, B-9

Queue Maintenance, 4-2

R
RAGE 128 Internal Parameter
Table Format, B-17

Raster Image, 2-10

raster image, 2-10

rasterization, 2-10

Ratiometric Expander
Scalars, 7-3

Read Character/Attribute at
Current Active Cursor
Position, A-3

read character/attribute at current
active cursor position, A-3

Read Current Cursor Position at
the specified page, A-2

read current cursor position at the
specified page, A-2

Read Current Light Pen
Position, A-2

read current light pen position
(VGA does not support light
pen), A-2

Read Dot (graphics mode), A-4

read dot (graphics mode), A-4

Read EDID, D-24

Rectangles
drawing, 4-4, 6-5

Refresh Rate (CRT only), B-12

REGDEF, 4-2

repeated field, 7-25

Report VBE/DDC
Capabilities, D-23

Report VBE/PM
Capabilities, D-21
RAGE 128 Series Design Guide © 1998 ATI Technologies Inc.
ix-8 Preliminary Proprietary and Confidential

Index
Return Current EGA
Settings/Print Screen Routine
Selection, A-9

return current EGA settings/print
screen routine selection, A-9

Return Current Video
Mode, D-13

Return Current Video
Setting, A-5

return current video setting, A-5

Return Super VGA
Information, D-3

Return Super VGA Mode
Information, D-6

Return VGA Functionality and
State Information, A-12

return VGA functionality and state
information, A-12

RGB format, 2-13

RGB1555, 7-5

RGB565, 7-5

RGB8888, 7-5

RGBa format, 2-14

ring buffer, 5-9

Ring Buffer Management, 5-9

Ring Buffer Server, 5-11

ROM Header, C-1

Run, 7-10

S
Saturation Control, 7-6

Save and Restore Graphics
Controller Data, B-12

Save and Restore Video
State, A-15

save and restore video
state, A-15

Save/Restore State, D-14

Scalar
back-end video, 7-3
Blits, 7-3
horizontal down, 7-2
input video, 7-2
programming, 7-15
subpicture, 7-3

Scalars
ratiometric expander, 7-3
scan conversion, 7-3

Scaled BitBlt, 4-6

scaling operations, 7-22

scaling quality, 7-4

Scan Conversion Scalars, 7-3

scanlines, 2-10

Scratch Registers, C-1, C-6

screen image, 2-10

Scroll Active Page Down, A-3

scroll active page down, A-3

Scroll Active Page Up, A-3

scroll active page up, A-3

Select Active Display Page, A-2

select active display page, A-2

separable filters, 7-21

Server
ring buffer, 5-11

Set AC Palette Format, D-19

Set Color Palette, A-4

set color palette, valid for modes
4 and 5 only, A-4

Set Current Cursor Position, A-2
© 1998 ATI Technologies Inc. RAGE 128 Series Design Guide
Proprietary and Confidential Preliminary ix-9

Index
set current cursor position, A-2

Set Cursor Type, A-2

set cursor type, A-2

Set DAC State, B-5

Set Display Controller
State, B-4

Set Display Mode, B-4

Set display mode, B-4

Set Display Power State, D-21

Set Palette Registers, A-5

set palette registers, A-5

Set Super VGA Video
Mode, D-12

Set the DAC to different
states, B-5

set video mode, A-1

Set Video Mode (AL = Video
mode), A-1

Set/Get AC Palette Data, D-20

Set/Get AC Palette
Format, D-19

Set/Get Display Start, D-18

Set/Get Logical Scan Line
Length, D-17

Shading, 6-52

sharpening filters, 7-7

sharpening special effect, 7-7

Short Query Function 0, B-6

Short Query Function 1, B-6

Short Query Function 2, B-6

shrink, 7-4

sinc, 7-4

small window, 7-9

Source Window
setting up, 7-20

spatial aliasing, 7-4

spatial resampling, 7-21

spatial resampling filter, 7-21

spatial-resampling filters, 7-7

Specified Clock Entry, B-5

Starting the CCE
Microengine, 5-3

Status Information, D-2

Stencil Buffer, 6-56

Stencil Buffer, states, 6-57

STENCIL_TEST, 6-56

submit field, 7-12

Subpicture decoder, 7-4

Subpicture Scalar, 7-3

Super VGA Information, D-3

Super VGA Mode
Information, D-6

Super VGA Video Mode, D-12

Supported Mode, B-9

Synchronizing Decoded Video
Streams, 7-13

System Bus Master Transfer
setting up, 7-39

T
tap, 7-4

tap modes, 7-5

Teletype, A-4

TEX_CNTL_C
ALPHA_LIGHT_FN, 6-47
TEX_LIGHT_FN, 6-46
RAGE 128 Series Design Guide © 1998 ATI Technologies Inc.
ix-10 Preliminary Proprietary and Confidential

Index
Texture Coordinate
Selection, 6-47

Texture Data, loading, 6-48

Texture Mapping, 6-38

Transparent BitBlt, 4-6

Transparent BitBlt (Bit Block)
Transfer, 4-8

True RGB Color, 2-10

True RGB color, 2-11

truncated-sinc curve, 7-4

TV Information, C-8

TV or Flat Panel
Functions, B-12

TV parameter table, B-16

TV Standard, B-15

TVOut Info, B-15

U
update-overlay
commands, 7-12

upscaling, 7-3

Usage, 5-1

V
VBE/DDC Function 0 - Report
VBE/DDC Capabilities, D-23

VBE/DDC Function 1 - Read
EDID, D-24

VBE/PM Function 0 - Report
VBE/PM Capabilities, D-21

VBE/PM Function 1 - Set Display
Power State, D-21

VBE/PM Function 2 - Get Display
Power State, D-21

VCLK_Offset, 7-31

Vertical Accumulator
setting up, 7-23

Vertical UV Scaling, 7-22

Vertical Y Scaling, 7-22

Vertical-filter engines, 7-5

VGA Controller, 2-3

VGA Functionality and State
Information, A-12

Video BIOS Base Address, B-2

Video BIOS Heade, C-2

video frame buffer, 7-3

Video Input Scalar, 7-2

video memory, 2-16

Video Memory Addressing, 2-17

Video Mode, D-13

Video Mode (AL = Video
mode), A-1

Video State, A-15

view window, 7-20

W
WaitUntilEvent command, 7-13

Walk, 7-10

weave, 7-6

Width Info, B-7

Window Control, D-15

Write Character at Current Cursor
Position of a specified page, A-4

write character at current cursor
position of a specified page, A-4
© 1998 ATI Technologies Inc. RAGE 128 Series Design Guide
Proprietary and Confidential Preliminary ix-11

Index
Write Character/Attribute at
Current Cursor Position of a
specified page, A-3

write character/attribute at current
cursor position of a specified
page, A-3

Write Dot (graphics mode), A-4

write dot (graphics mode), A-4

Write String to Specified
Page, A-11

write string to specified
page, A-11

Write Teletype to Active
Page, A-4

write teletype to active
page, A-4

Z
Z Testing, 6-54

Z_TEST, 6-55

zoom, 7-4
RAGE 128 Series Design Guide © 1998 ATI Technologies Inc.
ix-12 Preliminary Proprietary and Confidential

Appendix G
List of Tables

G.1 List of Tables Sorted by Name

Table G-1 List of Tables Sorted by Name

Table Title Page

15-bpp, aRGB, or 1555 Format 2-13

16-bpp, RGB, 565 Format 2-13

1-bpp Format (left-to-right) 2-12

1-bpp Format (right-to-left) 2-12

24-bpp Format (display only) 2-14

32-bpp, RGBa, or 8888 Format 2-14

8-bpp Pseudo-color Format 2-12

ALPHA_BLND_DST 6-49

ALPHA_BLND_SRC 6-49

ALPHA_COMB_FCN 6-50

ALPHA_FACTOR 6-44

ALPHA_TEST_OP 6-51

BACKFACE_CULLING_FN and
FRONTFACE_CULLING_FN

6-54

Chapter Summary 1-3

COLOR_FACTOR 6-43

COMB_FCN_ALPHA 6-44

Cursor Pixel 4-21

Descriptor Table 7-37

Destination Comparator 4-9

Destination Comparator 6-18

Display Codes (AH = 1Ah) A-11

DP_GUI_MASTER_CNTL 3-24

Formal for a Type 3 CCE Packet F-8
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential G-1

Format for a Type 1 CCE Packet F-5

Format for a Type-0 CCE Packet F-3

Format of a Type 2 CCE Packet F-7

GUI_CONTROL Subfield for the SETTINGS Field F-12

Header Fields for a Type 1 CCE Packet F-5

Header Fields for a Type 3 CCE Packet F-8

Header Fields for a Type-0 CCE Packet F-3

Header Fields of a Type 2 CCE Packet F-7

Information Body (IT_BODY) of 2-D packets F-12

Information Body for a Type 1 CCE Packet F-6

Information Body for a Type-0 CCE Packet F-4

INPUT_FACTOR 6-43

INPUT_FACTOR_ALPHA 6-45

Inputs for the Set Display Mode BIOS Function 3-7

Memory Map 2-22

Memory Specifications 3-21

Pixel Location in Memory 4-20

PM4_COLOR_FCN 6-52

PRIM_MAG_BLEND_FCN 6-40

PRIM_MIN_BLEND_FCN 6-40

PRIM_TEXTURE_CLAMP_MODE_S 6-41

PRIMARY_COMB_FCN 6-42

PRIMARY_DATATYPE 6-39

RAGE 128 Buffers 2-3

RAGE 128 Device IDs 3-2

RAGE 128 Functional Blocks 2-3

SECONDARY_INPUT_FACTOR 6-45

SECONDARY_INPUT_FACTOR_ALPHA 6-45

SETTINGS FIELD for the IT_BODY F-12

Source Comparator 4-9

Source Comparator 6-17

Table G-1 List of Tables Sorted by Name (Continued)

Table Title Page
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential G-2

States for Stencil Buffer 6-57

STENCIL_TEST 6-56

Summary of the CEE Packets F-10

Supported Modes 7-6

TEX_CNTL_C:ALPHA_LIGHT_FN 6-47

TEX_CNTL_C:TEX_LIGHT_FN 6-46

VESA Super VGA Modes D-5

Video BIOS Header C-2

Z_PIX_WIDTH 6-55

Z_TEST 6-55

Table G-1 List of Tables Sorted by Name (Continued)

Table Title Page
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential G-3

This page intentionally left blank.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
G-4 Proprietary and Confidential

Appendix H
List of Figures

H.1 List of Figures Sorted by Name

Table H-1 List of Figures Sorted by Name

Figure Title Page

2D Coordinate System 6-2

AGP Memory Architecture - Software Layout 2-25

BitBlt - Bit Block Transfer Copying an Image from Source to Destination 4-7

Copy an Image from Source to Destination 6-15

Cursor Related Parameters 4-19

Drawing Small Text F-22

Memory Map 2-20

Modeling Worst Case Behavior 7-33

Parameters of Text 6-24

PCI Non-AGP Memory Architecture - Software Layouts 2-26

Polyline 6-9

Polyscanlines 6-11

Quality Comparison between Filter Techniques 7-9

RAGE 128 Structure and Data Flow 2-2

RAGE 128 Structure and Data Flow 5-2

Rectangles 6-6

Ring Buffer and its Control Structure 5-10

Scaled Image Transfer 4-11

Scaled Image Transfer 6-21

Scaling Quality Improvement 7-8

The fetch request beginning as early as possible 7-30

The Indirect Buffer 2-9

The Indirect Buffer 5-16
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential H-1

The Ring Buffer 2-8

Transparent Bit-Block Transfer 6-19

Type 0 CCE Packet F-3

Type 1 CCE Packet F-5

Type 2 CCE Packet F-7

Type 3 CCE Packet F-8

Video Memory 2-18

Table H-1 List of Figures Sorted by Name (Continued)

Figure Title Page
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
H-2 Proprietary and Confidential

Appendix I
List of Example Code

I.1 List of Example Code Sorted by Name

Table I-1 List of Example Code Sorted by Name

Example Code Page

Accelerated line drawing 4-13

Convert the physical addresses to a usable virtual address 3-5

Copying an image from a source to a destination 4-7

Copying an image from a source to a destination 6-16

Copying an image from the source to the destination with scaling 6-22

Drawing a patterned line 4-15

Drawing a polyline 6-9

Drawing a rectangle 4-4

Drawing polyscanlines 6-12

Drawing rectangles 6-6

Drawing text in large font 6-28

Drawing text in small font 6-26

Finding the post and feedback divider for a given dot clock frequency 3-17

Initializing a hardware cursor 4-21

Initializing the GUI engine 3-26

Initializing the microengine 5-5

Loading the microcode into the microengine 5-3

Monochrome expanded Blt operation 4-17

Ring buffer management 5-11

Scaled BitBlt operation 4-12

Setting the Display Mode 3-10

Setting the Mode 3-8

Setting up a packet to draw an independent triangle 6-33
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential I-1

Setting up a packet to draw an independent triangle using explicit
vertex indices

6-35

Setting up the horizontal accumulator 7-17

Setting up the horizontal accumulator 7-19

Setting up the packet to draw an independent triangle using the implicit
vertex list in the vertex buffer

6-38

Shutting down the microengine 5-14

Submitting a CCE packet 6-52

Submitting packets using programmed I/O (PIO) mode 5-12

Submitting packets with Bus Mastering 5-13

Transparent BitBlt 6-19

Transparent BitBlt Operation 4-10

Waiting for idle 4-3

Waiting for the FIFO 4-2

Table I-1 List of Example Code Sorted by Name (Continued)

Example Code Page
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
I-2 Proprietary and Confidential

Appendix J
Revision History

J.1 SDK-G04000 Rev 0.01 (SD40001.pdf)

First draft completed in Aug 1999.
© 1999 ATI Technologies Inc. RAGE 128 Software Development Manual
Proprietary and Confidential J-1

This page intentionally left blank.
RAGE 128 Software Development Manual © 1999 ATI Technologies Inc.
J-2 Proprietary and Confidential

	Overview
	1.1 Scope
	1.2 Major Features of the RAGE 128
	1.3 A Chapter Summary of this Manual
	1.4 Notations and Conventions Used in this Manual
	1.5 Nomenclature and Conventions
	1.5.1 Register and Field Names
	1.5.2 Numeric Representations
	1.5.3 Register Description

	Programming Basics
	2.1 Scope
	2.2 Overview
	2.3 Operation Modes
	2.3.1 VGA Mode
	2.3.2 Accelerator Mode

	2.4 Drawing Modes in Acceleration-operation Mode
	2.5 Review of Imaging Terminology
	2.5.1 Raster Image
	2.5.2 True RGB Color
	2.5.3 Representing Pixels
	2.5.4 Pixels
	2.5.5 Pitch
	2.5.6 Video Memory

	2.6 Memory Apertures
	2.6.1 VGA Memory Aperture
	2.6.2 Video BIOS
	2.6.3 Register Apertures
	2.6.4 Linear Memory Apertures
	2.6.5 AGP System Memory Image
	2.6.6 RAGE 128 PCI GART

	2.7 Display Mode and Mode Switching
	2.8 Engine Discipline
	2.9 BIOS Services

	Accelerator Operation Mode
	3.1 Scope
	3.2 Step 1: Detect the RAGE 128
	3.2.1 Using the PCI Configuration Space
	3.2.2 Scanning the BIOS Segment
	3.2.3 Scratch Register Test

	3.3 Step 2: Obtain the Configuration Information
	3.4 Step 3: Set a Display Mode
	3.4.1 Using the BIOS Function
	3.4.2 Passing a CRT Parameter Table to Set a Display Mode
	3.4.3 Manually Setting a Display Mode
	3.4.4 Calculating the PLL Register Values
	3.4.5 Determining the Post and Feedback Dividers
	3.4.6 Programming the DDA

	3.5 Step 4: Initialize the GUI Engine

	Programming
	4.1 Scope
	4.2 Engine Command Queue Maintenance
	4.3 Programmed I/O Drawing Operations
	4.3.1 Drawing Rectangles
	4.3.2 Drawing Lines

	4.4 Hardware Cursor

	CCE Engine Initialization and Usage
	5.1 Scope
	5.2 Starting the CCE Microengine
	5.2.1 Wait for Engine Idle
	5.2.2 Load the Microcode into the Microengine
	5.2.3 Load the CCE Registers
	5.2.4 Cautions When Programming RAGE 128 in CCE Mode

	5.3 Ring Buffer Management
	5.3.1 The Ring Buffer Concept
	5.3.2 Ring Buffer Server
	5.3.3 Indirect Buffer

	CCE Packets
	6.1 Scope
	6.2 2D Coordinate System
	6.2.1 Essentials of 2D Drawing Operations

	6.3 Drawing Objects
	6.3.1 Drawing Rectangles
	6.3.2 Drawing Polylines
	6.3.3 Drawing Polyscanlines

	6.4 Block Transfers
	6.4.1 Bit Block Transfer
	6.4.2 Transparent Bit Block Transfer
	6.4.3 Scaled Block Transfer
	6.4.4 Transparent Scaled Block Transfer

	6.5 Drawing Text
	6.5.1 Drawing Text in Small Font
	6.5.2 Drawing Text in Large Font

	6.6 3D Rendering
	6.6.1 Setting Up the 3D Context
	6.6.2 Drawing 3D Primitives
	6.6.3 Texture Mapping
	6.6.4 Setting 3D Render States

	Advanced Topics
	7.1 Scope
	7.2 Back-End Overlay and Scalar
	7.2.1 Feature Summary for the Back End Video Scalar
	7.2.2 Functional Overview
	7.2.3 Additional Quality Enhancements

	7.3 Auto-Flipping and Advanced Deinterlacing
	7.4 Overlay Autonomous Updating
	7.5 Synchronizing Decoded Video Streams to the Display Refresh
	7.5.1 GUI Stall Mechanism

	7.6 Programming the Scalar
	7.6.1 Overview
	7.6.2 Setup
	7.6.3 Bandwidth
	7.6.4 Managing Bandwidth
	7.6.5 Physical Scaling Ratios
	7.6.6 Setting up the Horizontal Accumulator
	7.6.7 Setting up the Destination Window
	7.6.8 Setting up the Source Window
	7.6.9 Calculating the Filter Coefficients
	7.6.10 Setting up the Vertical Accumulator
	7.6.11 Autonomous Update
	7.6.12 Autoflipping and Advanced Deinterlacing

	7.7 Color Controls
	7.8 Keying Controls
	7.9 Tabulating Cycles in the HBlank
	7.9.1 Part 1
	7.9.2 Part 2
	7.9.3 Part 3

	7.10 Tips for Getting More Bandwidth
	7.11 Front-end Scalar
	7.12 Bus Mastering
	7.12.1 Bus Master Operation
	7.12.2 Creating a Descriptor Table
	7.12.3 Setting up a System Bus Master Transfer

	BIOS Function Calls
	A.1 Scope
	A.2 AH = 0; Set Video Mode (AL = Video mode)
	A.3 AH = 1; Set Cursor Type
	A.4 AH = 2; Set Current Cursor Position
	A.5 AH = 3; Read Current Cursor Position at the specified page
	A.6 AH = 4; Read Current Light Pen Position
	A.7 AH = 5; Select Active Display Page
	A.8 AH = 6; Scroll Active Page Up
	A.9 AH = 7; Scroll Active Page Down
	A.10 AH = 8; Read Character/Attribute at Current Active Cursor Position
	A.11 AH = 9; Write Character/Attribute at Current Cursor Position of a specified page
	A.12 AH = 0Ah; Write Character at Current Cursor Position of a specified page
	A.13 AH = 0Bh; Set Color Palette
	A.14 AH = 0Ch; Write Dot (graphics mode)
	A.15 AH = 0Dh; Read Dot (graphics mode)
	A.16 AH = 0Eh; Write Teletype to Active Page
	A.17 AH = 0Fh; Return Current Video Setting
	A.18 AH = 10h; Set Palette Registers
	A.19 AH=11h; Character Generator Routines
	A.20 AH = 12h; Return Current EGA Settings/Print Screen Routine Selection
	A.21 AH = 13h; Write String to Specified Page
	A.22 AH=1Ah; Display Combination Code
	A.23 AH=1Bh; Return VGA Functionality and State Information
	A.24 AH=1Ch; Save and Restore Video State

	Extended BIOS Function Calls
	B.1 Scope
	B.2 BIOS Extensions
	B.2.1 Video BIOS Base Address
	B.2.2 Calling Extended Functions
	B.2.3 Compatibility
	B.2.4 Extended BIOS Services
	B.2.5 Function 00h - Set Display Mode
	B.2.6 Function 01h - Set Display Controller State
	B.2.7 Function 02h - Set DAC State
	B.2.8 Function 03h - Program Specified Clock Entry
	B.2.9 Function 04h - Short Query Function 0
	B.2.10 Function 05h - Short Query Function 1
	B.2.11 Function 06h - Short Query Function 2
	B.2.12 Function 07h - Query Graphics Hardware Capability and Capture Width Info
	B.2.13 Function 08h - Query Installed Modes
	B.2.14 Function 09h - Query Supported Mode
	B.2.15 Function 0Ah - Display Power Management Service (DPMS)
	B.2.16 Function 0Bh - Display Data Channel (DDC) Service
	B.2.17 Function 0Ch - Save and Restore Graphics Controller Data
	B.2.18 Function 0Dh - Get/Set Refresh Rate (CRT only)
	B.2.19 Function 14h - Detect CRT/TV/DFP
	B.2.20 Function 15h - Get/Set Active Display(s)
	B.2.21 Function 16h - Get/Set TV Standard
	B.2.22 Function 17h - Get TVOut Info

	B.3 Mode Table Structure
	B.3.1 CRTC Parameter Table

	B.4 RAGE 128 Internal Parameter Table Format
	B.4.1 CRTC Parameter Table

	BIOS Header, Scratch Registers and Information Tables
	C.1 Scope
	C.2 Video BIOS Header
	C.3 Scratch Registers
	C.4 Information Tables
	C.4.1 TV Information
	C.4.2 DFP Information

	VESA BIOS Extension
	D.1 Scope
	D.2 Status Information
	D.3 Function 00h - Return Super VGA Information
	D.4 Function 01h - Return Super VGA Mode Information
	D.5 Function 02h - Set Super VGA Video Mode
	D.6 Function 03h - Return Current Video Mode
	D.7 Function 04h - Save/Restore State
	D.8 Function 05h - Display Window Control
	D.9 Function 06h - Set/Get Logical Scan Line Length
	D.10 Function 07h - Set/Get Display Start
	D.11 Function 08h - Set/Get AC Palette Format
	D.11.1 Subfunction 0 - Set AC Palette Format
	D.11.2 Subfunction 1 - Get AC Palette Format

	D.12 Function 09h - Set/Get AC Palette Data
	D.13 Power Management Services
	D.13.1 VBE/PM Function 0 - Report VBE/PM Capabilities
	D.13.2 VBE/PM Function 1 - Set Display Power State
	D.13.3 VBE/PM Function 2 - Get Display Power State

	D.14 Display Identification Extensions
	D.14.1 VBE/DDC Function 0 - Report VBE/DDC Capabilities
	D.14.2 VBE/DDC Function 1 - Read EDID

	BIOS Hardware Configuration and Multimedia Tables
	E.1 Scope
	E.2 BIOS Multimedia Table
	E.3 BIOS Hardware Configuration Table
	E.4 BIOS Tables for RAGE 128 / RAGE THEATER Board
	E.4.1 Multimedia Table
	E.4.2 Hardware Configuration Table

	CCE Command Packets
	F.1 Scope
	F.2 Notation used this Section
	4.1 Type-0 CCE Packet
	F.3 Type 1 CCE Packet
	F.4 Type 2 CCE Packet
	F.5 Type 3 CCE Packet
	F.6 Summary of the CEE Packets
	F.7 2D Packets
	F.8 NOP
	F.9 PAINT
	F.10 SMALL_TEXT
	F.11 HOSTDATA_BLT
	F.12 POLYLINE
	F.13 SCALE
	F.14 TRANS_SCALE
	F.15 POLYSCANLINES
	F.16 NEXTCHAR
	F.17 PAINT_MULTI
	F.18 BITBLT_MULTI
	F.19 TRANS_BITBLT
	F.19.1 CLR_CMP_CNTL

	F.20 PLY_NEXTSCAN
	F.21 LOAD_PALETTE
	F.22 SET_SCISSORS
	F.23 SET_MODE_24BPP
	F.24 3D_RNDR_GEN_PRIM
	F.24.1 VC_FORMAT
	F.24.2 VC_CNTL
	F.24.3 FTLVERTEX

	F.25 Interpretation of Vertices
	F.25.1 Points (1)
	F.25.2 Lines (2)
	F.25.3 Polylines (3)
	F.25.4 Triangles (4)
	F.25.5 Triangle Fan (5)
	F.25.6 Triangle Strip (6)

	F.26 3D_RNDR_GEN_INDX_PRIM
	F.26.1 Vertex Array Format

	F.27 NEXT_VERTEX_BUNDLE

	List of Tables
	G.1 List of Tables Sorted by Name

	List of Figures
	H.1 List of Figures Sorted by Name

	List of Example Code
	I.1 List of Example Code Sorted by Name

	Revision History
	J.1 SDK-G04000 Rev 0.01 (SD40001.pdf)

